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Abstract

A bandwidth analysis of a tightly-packed crossed-dipole array antenna is presented in

this thesis. A parametric study is described which varies the element spacing in the array

and the resulting change in the terminal impedances is reported. The increased mutual

coupling seen by the elements as a result of smaller element spacings is shown to minimize

the variation in the value of the elements terminal currents across a 0.3 GHz to 3.0 GHz

frequency range. This small variation in current translates into a minimal variation in the

terminal impedances for a fixed excitation voltage. This is shown to be an ideal condition in

which to perform a wide-band impedance matching technique using stepped-transmission

lines to bring the voltage-standing-wave-ratio (VSWR) of the array below 2. The analysis

is performed using a method-of-moments computational electro-magnetics code which

models the antenna as a finite-by-infinite array using Floquet Mode expansion. The current

distribution and the far-field pattern across the L-band frequency range for the array is also

presented.
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BANDWIDTH ANALYSIS OF A TIGHTLY-PACKED CROSSED-DIPOLE ARRAY

FOR SATELLITE COMMUNICATIONS

I. Introduction

1.1 Overview

Deployable reflector antennas are often used on communication satellites because

they can provide high gain and directivity once they are placed in orbit. These types of

antennas are designed to be space and weight efficient and can be folded and stowed inside

of the limited volume of a launch vehicle’s payload fairing. Traditionally, many of these

deployable antenna designs have used flexible, expanding parabolic membranes to form the

main reflector. As an alternative, one antenna design that is being studied for its feasibility

uses a cross-shaped deployable reflector that opens through a series of expanding cells

that are built into the arms [1]. A reflective mesh material is suspended between the cells

that make up each arm. The final shape of the deployed reflector forms two orthogonal

reflecting arms each with a curvature that follows a parabolic contour. This reflector is

being studied as part of an Air Force Office of Scientific Research (AFOSR) sponsored

project. Previous studies have considered the mechanical feasibility of the deployment

mechanism and the electrical properties of the reflector [1], [2]. Several designs for the

feed have also been investigated which focused on tailoring the beam pattern to efficiently

fill the surface of the reflector [3], [4]. These studies for the feed have thus far been limited

to a single frequency analysis at 1.5 GHz. This frequency was chosen because the surface

of the reflector was designed with a mesh density fine enough to support the L-band range

of frequencies from 1 - 2 GHz [1].
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The focus of this thesis is in designing a suitable feed for the cruciform reflector

which provides an impedance bandwidth large enough to cover the L-band frequencies.

The impedance bandwidth is defined in this study as the set of frequencies where the

Voltage-Standing-Wave-Ratio (VSWR) at the terminals of the antenna is less than 2:1.

This commonly used metric for describing the impedance bandwidth of antennas ensures

that as much power is delivered to the antenna as possible from the generator, and that

minimal power is reflected back towards the generator. A threshold VSWR of 2 means that

at a maximum, the reflected power lost at the terminals of the antenna is limited to 11% of

the total power supplied by the generator at the L-band frequencies.

The approach for designing the feed will start by first considering a general array

antenna layout with a loosely defined physical spacing between the array elements. The

general array design consists of several rows and columns of tightly spaced crossed-dipole

elements. This kind of array configuration was proposed as a promising feed design

because similarly configured tightly packed array structures have been used to produce

broadband antennas in the past [5]. The array elements are chosen to be crossed-dipoles

to produce the circular polarization for the emitted wave which is necessary for satellite

communications [6]. A parametric study will be performed on this general design by

varying the spacing between the array elements. The terminal impedances and reflection

coefficients for each element will be observed as the element spacing is varied. The

spacing configurations which produce the most favorable impedance characteristics will

be identified. The findings of the parametric study will then be used to define a specific

element spacing for the array to create a final feed design.

Next, a wide-band impedance matching network will be developed that would be

applied to the terminals of the array elements in the feed. This matching network will

be used to transform the impedances that were calculated for the array in the 1-2 GHz

range to ensure that the VSWR of the antenna is below 2 for all of the L-band frequencies.
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The study will be conducted using a computational electromagnetics code to simulate

the different array designs. This code will calculate the currents on the array elements

which can then be used to find the impedances at the terminals of each element. This

code will also be used to calculate the far-field radiation pattern produced by the final feed

design.

1.2 Problem Statement

Previous analyses for the feed of the deployable cruciform reflector antenna have been

limited to a single-frequency at 1.5 GHz. Additionally, these analyses have only looked at

the far-field radiation pattern and have not addressed the impedance characteristics of the

feed. These impedance characteristics are critical in determining the radiation efficiency of

an antenna across the desired bandwidth. Therefore, this study focuses on designing a feed

which meets the bandwidth criteria of having a VSWR less than 2 for the L-band range of

frequencies.

1.3 Research Objectives

The primary objective of this research is to find an array configuration based on the

tightly packed crossed-dipole design to serve as a feed for the cruciform reflector antenna.

Additionally, this research uses the theory and computational tools developed for

analyzing Frequency Selective Surfaces (FSS) to model the antenna feed. Past broadband

antennas based on FSS designs consisted of multiple columns of dipole arrays modeled

as finite-by-infinite structures. Generally, the number of columns used in these structures

were on the order of tens of columns. These antennas were shown to produce around a

4:1 fractional bandwidth [5]. The proposed crossed-dipole array for this feed reduces the

number of columns down to only two. Therefore, another research objective is to see if

array antennas designed at this lower limit for the number of columns in the array can still

produce close to a 4:1 bandwidth without using any dielectric layers.
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Another research objective is to test the efficacy of the stepped-transmission line wide-

band matching technique used to bring the VSWR of the array antenna below two. This

technique is simple in its implementation and only requires short sections of transmission

line with differing characteristic impedances to accomplish the matching. The amount of

reduction in the VSWR after implementing these simple matching networks will be noted

in the study.

1.4 Assumptions and Limitations

A number of approximations are made in the investigation of the crossed-dipole

arrays to simplify the analysis. The first is the modeling of the column arrays in the feed

structure using infinite periodic columns. The center section of the proposed feed design

is comprised of a 28-by-2 crossed-dipole array. This will be modeled in the computational

electro-magnetics code using two infinitely long columns of periodically spaced elements.

This allows Floquet’s Theorem to be utilized which simplifies the treatment of the array

currents as will be discussed in Chapter 3. The consequence of this approximation is

that the edge effects are ignored in the infinite direction. Therefore, the last few elements

towards the ends of the 28-by-2 array may not be modeled accurately using this approach.

Nevertheless, because there are so many more elements in the one direction versus the

other, this approach will sufficiently capture the impedance and radiation characteristics

for the large majority of the elements in the array.

Another approximation which is made in the analysis of the feed is that the horizontal

and vertical elements of each crossed-dipole are considered separately. This assumes that

the orthogonal elements of a crossed-dipole do not couple when they are radiating. The

justification for making this assumption stems from the fact that the radiation pattern of

half-wave dipoles have a toroidal shape with the nulls in the pattern pointing in the direction

parallel to the dipole orientation [7]. Treating the orthogonal elements separately allows

for a greater range of geometric configurations to be considered without encountering the
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physical limitation of overlapping dipoles in the parametric study. This helps isolate the

effect of reducing the element spacing for each direction in the analysis.

The simulations also do not take into account how the dipoles are being mechanically

supported in the array. Whether they are embedded in a substrate or supported on posts is

ignored in the simulation. Furthermore, the feed-lines connecting the individual elements

to the generator are not modeled from an electromagnetic interference stand-point. While

the scattering effect of these physically present objects is important, the focus of this

study was not necessarily to model the array in full physical fidelity in its surrounding

environment. Instead, from an engineering standpoint this study focuses on designing

broadband arrays using a number of fundamental design principles. As such, the analysis

focuses on capturing and describing the physics of just the scattering and coupling from

the array elements themselves. The ground-plane however, was considered in the study

since it is a major contributor to not only the radiation pattern, but because it also has a

significant effect on the bandwidth of the array as well. Furthermore, because a bulk of this

thesis consists of the parametric study, rapid analyses of a large number of configurations

in which the major physical effects that could be described succinctly was preferred. Full

physical fidelity modeling of the feed would be appropriate at a later stage in the design

maturity.

Aside from the matching network applied directly behind the terminals of each

antenna, the rest of the feed network consisting of the Radio Frequency (RF) circuit

elements such as directional couplers are not included in this study. The domain of this

problem is restricted to observing the impedances at the terminals of the dipole elements

as a result of the coupling between them. The behind-the-ground-plane problem is not

considered in this study.

Finally, the array designs are limited to an analysis that does not consider any type

of dielectric coatings on the array. These dielectric coatings are typically used to further
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improve the bandwidth of the arrays but this study only focuses on the effect of changing

the geometric spacing between elements radiating in free-space. Therefore, throughout

the analysis, the permittivity and permeability constants present in the equations and

simulations are the values for these constants in vacuum. All conducting surfaces were

assumed to be lossless perfect electric conductors as well.

1.5 Methodology

The methodology used in this study is provided in full detail in Chapter 3, but an

overview of the approach will be explained here. The general feed design described

in Section 1.1 will be analyzed first in a Computational Electro-Magnetics (CEM) code

called Scattering from Periodic Linear Array of Thin-wire elements (SPLAT) [8]. The

vertical and horizontal element spacing between crossed-dipoles will be changed between

the simulations that are executed in SPLAT. The output data from SPLAT is a file containing

the calculated array element currents. This output file will be post-processed in Matrix

Laboratory (MATLAB) where a number of scripts will use the array currents to calculate

the terminal impedances of the individual elements. From these impedance values, the

reflection coefficient and the VSWR will also be calculated and the results will be plotted

on a Smith Chart. These results will show how the various element spacings affect the

impedance bandwidth of the array. Based on these results, a final array configuration will

be determined and this final configuration will be simulated again in SPLAT.

The terminal impedance values for this final design will then be used to develop an

impedance matching network using the principles of stepped-transmission line matching.

This will be done using MATLAB by applying the governing equations for the impedance

transformation which results from connecting the stepped-transmission line network to

the antenna terminals. The terminal impedances, reflection coefficients and VSWR after

matching will again be plotted on a Smith Chart and compared to the results before

matching.
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Finally, the far-field radiation pattern for the final array design will be calculated using

SPLAT. The output data for this type of simulation is a file containing the values of the θ

and φ components of the electric field for different observation angles. This data will

be imported into MATLAB and plotted on a polar-dB plot to show the far-field radiation

pattern from the feed.

1.6 Summary

This thesis covers the design and analysis of a crossed-dipole array feed for a

deployable cruciform reflector antenna for use in satellite communications. This study

focuses on the impedance characteristics of the feed and will be analyzed primarily using

a computational electro-magnetics code. The overall research goal is to design a feed with

an impedance bandwidth covering the L-band range of frequencies. A brief discussion of

the background of the project, the assumptions and limitations made in this study, and an

overview of the methodology have been provided in this section.

Overall, the design and analysis of this reflector antenna is a sponsored research

project funded by the Air Force Office of Scientific Research and the results of this

study have implications in improving the efficiency of United States Air Force satellite

communications.
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II. Background and Literature Review

The literature review presented in this chapter is divided into three sections. First,

the project history of the deployable cruciform reflector antenna will be discussed by

summarizing three prior Air Force Institute of Technology (AFIT) theses that have analyzed

different aspects of this antenna. Additionally, a number of conference articles were

submitted to various Institute of Electrical and Electronics Engineers (IEEE) and American

Institute of Aeronautics and Astronautics (AIAA) conferences concerning this design

which will be summarized as well. Two of these articles focused specifically on the feed

design.

In the second section, some of the literature concerning frequency selective surfaces

and array antennas will be discussed. This section covers the texts that have developed

the theory of frequency selective surfaces that were used in this study. In particular, the

two books written by B.A. Munk covering this topic in detail are cited heavily throughout

this thesis. Many of the derivations and design techniques used in this thesis were adopted

directly from those two books. Additionally, the PhD dissertation written by D.S. Janning

describes in detail the theoretical aspects of the SPLAT code used for this study. Portions of

the theoretical aspects describing SPLAT’s operation from that text have been reproduced

in Chapter 3 of this thesis.

Lastly, the remaining section covers the topic of stepped-transmission line matching.

This matching technique has been applied to a wide variety of RF devices and has had a

long history of implementation. The literature on this topic stretches back to reports from

the Radio Research Laboratory at Harvard University from World War II. Examples of how

this technique was used to perform impedance matching in ways that are similar to what

was done in this thesis are provided and discussed in this last section.
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2.1 Deployable Cruciform Antenna

The deployable cruciform reflector antenna shown in Figure 2.1 was first studied at

AFIT for its scattering characteristics by J.M. Wilson as part of his thesis research [2]. The

antenna, referred to as the R150 antenna, was designed to have an overall length of 150

m, and a width of 6.74 m, for each of its two intersecting arms. The parabolic contour of

each arm was designed so that the focal length of the reflector would be located 80 m from

the center of the arms. This type of large geometry was proposed by the Air Force Office

of Scientific Research to investigate large, high-gain satellite reflector antennas that could

transmit at high data rates. The goal of the R150 design was to produce a reflector with

a surface area which matched that of a 50 m diameter parabolic surface when deployed,

yet was still small enough when stowed to fit inside of a 5 m diameter payload fairing.

While several other reflector designs with multiple arms were considered that could meet

this criterion, mechanical studies done by Jennings, Black and Greschik eventually favored

the R150 design for its relative simplicity [9].

Figure 2.1: Cruciform reflector antenna
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Studies of the R150 reflector from a mechanical perspective were performed by Heller

et. al. [10]. These studies concluded that the reflector could be constructed robustly enough

to withstand the force of deployment. This construction specified using eight graphite-

epoxy truss boxes for each of the reflector arms that could collapse down into the required

5 meter storage limit. This detailed R150 deployment schematic is shown in Figure 2.2.

Heller proposed using pre-deformed springs that could release the arms once in orbit and

a network of Kevlar cables would maintain the curvature of the R150 arms. Additionally,

his work also showed that the reflector mesh suspended between each of the truss boxes

could maintain a surface-to-diameter error ratio of less than 10,000:1 allowing for reliable

L-band communications. The results of Hellers work were published in his AFIT thesis

and in a paper submitted to the AIAA Space Structures Conference titled “Precision of

Large Deployable Reflector” in 2014 [9].

  

Figure 2.2: Deployment of the cruciform reflector antenna
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Figure 2.3: 108-Element crossed-dipole array feed design

2.2 Periodic Arrays and Frequency Selective Surfaces

The study of periodic arrays in the context of frequency selective surfaces was

developed by B.A. Munk in Frequency Selective Surfaces: Theory and Design [5] and

Finite Antenna Arrays and FSS [11]. In this thesis, the tightly packed crossed-dipole

array is analyzed as a periodic array. Therefore, many of the techniques demonstrated

in this thesis are described in those two texts by Munk. In particular, the computational

electro-magnetics code, SPLAT, used in this analysis builds on the theory of finite-by-

infinite arrays as developed in [11]. Crucial to the analysis of infinite periodic arrays is

Floquet’s Theorem, which succinctly characterizes the array element currents by relating all

current values to a reference element current within the array. The application of Floquet’s

Theorem to the analysis of periodic antenna arrays is described in the aforementioned
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works by Munk and by Bhattacharyya in his text Phased Array Antennas: Floquet Analysis,

Synthesis, BFNs, and Active Array Systems [12].

In these texts, the Green’s Functions relating the currents on an infinite array to the

electric field are derived. This relationship is used to characterize the scattering properties

of periodic arrays and these Green’s Functions form the constitutive equations used in

SPLAT [8]. A detailed description of SPLAT regarding both its theory and operation are

described in the dissertation “Surface Waves in Arrays of Finite Extent” and the SPLAT

User’s Guide and Programmer’s Manual, by D.S. Janning [13],[8]. A more detailed

description of how the theory developed in these texts and enacted in the code are provided

in Section 3.2.

Finally, the wideband potential of tightly-packed periodic arrays is described in [11].

This work demonstrates the beneficial effect that the capacitive coupling between the

closely-packed array elements has on keeping the terminal impedances as constant as

possible across frequency. The 4:1 bandwidth of these kinds of arrays demonstrated in

[11] motivated the tightly-packed crossed-dipole array design investigated in this thesis.

2.3 Stepped-Transmission Line Wide-band Matching

In order to realize the bandwidth potential of periodic arrays, a wide-band matching

network is necessary to reduce the VSWR seen at the antenna terminals. The type of

matching network chosen for the antenna in this thesis is the stepped-transmission line

wide-band matching network which is also described in [11]. This simple matching

network consists of a series connection of transmission lines with different characteristic

impedances and has been described in various works. The matching network works

by establishing different reflection coefficients at the junctions between the mismatched

transmission lines to cancel out the reflected wave. The result is an impedance

transformation that drives down the VSWR at the antenna terminals. In this thesis, the
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impedance matching is done in part through a graphical technique using the Smith Chart to

visualize the impedance transformations that result from adding the matching network.

Very High Frequency Techniques Vol. I, compiled from the research conducted

at the Radio Research Laboratory at Harvard University, describes broadband matching

techniques that are also analyzed using graphical methods [14]. In this text, the bandwidth

of RF devices (including antennas) are described through using Resistance vs. Reactance

(R-X) curves. The bandwidth is related to the physical area that these curves occupy in the

complex plane. The stepped-transmission line is referred to as the “series-line transformer”

in [14] and its purpose is to cancel out the reflected wave from the antenna terminals.

Circles of constant reflection coefficient called definition circles are established on the R-

X plane and the impedance transformation caused by adding the series-line transformer is

visualized by moving the points that lie outside of these circles into the definition circles.

This is similar to the impedance transformation visualization on the Smith Chart that is

performed in this thesis, where the goal is to move as much of the impedance curve inside

of the VSWR = 2 circle at the center of the Smith Chart as possible. This process is

described in detail in Section 3.3.

A similar technique is described in “The Design of Frequency-Compensating

Matching Sections” by Rumsey [15]. This paper outlines a method of transforming a

complex load impedance that changes with frequency such that the resulting transformed

impedance remains as close as possible to a specified resistance over a small (50%)

frequency range. The transformation and matching is accomplished via sections of

quarter-wave coaxial lines. The paper describes the design procedure and provides the

accompanying design equations for determining the parameters of the matching sections.

The analysis is limited to quarter-wavelength sections to achieve a purely resistive

transformation and hinges on the assumption that the shortest and simplest matching

sections are preferred. The paper gives guidelines for using either high or low impedance
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lines depending on which quadrant of the Smith Chart the original impedance curve lies.

Some of the stepped-transmission line networks used in this thesis rely on a second stage

consisting of a quarter-wavelength section of either higher or lower impedance than the

feedline, and the analysis performed by Rumsey in [15], provides useful design guidelines.

The impedance transformation that results from adding sections of stepped-transmission

lines can be described using the transmission line equations as discussed in Section 3.3. In

the literature, several authors have discussed analytical techniques of determining the opti-

mal transmission line length and characteristic impedance values to perform the matching.

In this thesis, a combination of analytical and graphical techniques was used to perform

the matching. Hamid and Yunik describe in their article: “On the Design of Stepped-

Transmission Line Transformers,” a single frequency matching technique using an analyti-

cal and graphical method [16]. For a single frequency case, the authors describe a technique

for finding a set of optimal transmission line lengths and characteristic impedances based

on the ratio of the load resistance and characteristic impedance of the feedline. The results

of this paper show that this method is better than the quarter-wavelength matching as shown

in [15].

A purely analytical technique to find the optimal length and characteristic impedance

is described by Regier in “Impedance Matching with a Series Transmission Line Section”

[17]. In this paper, Regier sets up two transmission line equations: one from from the load

towards the feedline, and the second from the feedline towards the load. By equating the

real and imaginary parts of these two equations together (assuming that the equations are

equal for a perfect impedance match), the author sets up two simultaneous equations that

results in a quadratic equation. The solution of the quadratic equation yields the length and

characteristic impedance of the matching section. Again, the analysis in [17] is limited to

a single frequency case.
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III. Methodology

3.1 Parametric Study on Inter-element Spacing and the Effect on Bandwidth

The specific physical dimensions of the 108-element crossed-dipole array introduced

in [4] and shown in Figure 2.3 was described without exact specifications given for details,

such as the spacing between radiating elements, the ground plane distance, or the dipoles’

lengths and thicknesses. These details were left open so that a parametric study could be

conducted to find the optimal dimensions that would maximize the array’s bandwidth. In

this research, the parametric study to find these optimal dimensions was performed using a

method-of-moments electromagnetics code to simulate the array. The details of the array

geometry and the independent variables controlling the array dimensions are discussed in

the following sections.

3.1.1 Array Geometry Description.

Two types of array geometries were considered in this parametric study for the

crossed-dipole array. These two configurations are shown in Figure 3.1. The first

configuration is a collinear arrangement of crossed-dipoles where the terminals of the

dipole elements are in-line with each other. The second type of array is a staggered

arrangement of crossed-dipoles which allows for a tighter spacing between radiating

elements.

For the collinear configuration, the two independent variables that define the spacing

between adjacent dipoles in the simulations are Dx and Dz. Dx measures the horizontal

spacing between the terminals of adjacent dipoles from each column. The reference

coordinate system used in this study defines the horizontal direction along the x-axis.

Dz measures the vertical spacing between the terminals of adjacent dipoles within each

column. The vertical direction is defined along the z-axis.
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Figure 3.1: (a) Two-column collinear array configuration. (b) Two-column staggered

array configuration.

For the staggered configuration, Dz1,2 defines the vertical spacing between adjacent

dipoles from Column 1 to Column 2. Dx1,2 defines the horizontal spacing between adjacent

dipoles from Column 1 to Column 2. Dz defines the vertical distance between the elements

in the same column just as in the collinear configuration. For both configurations, the

spacing distances specified by these variables are measured from the center terminals of

the dipoles.

In order to reduce the number of independent variables for the parametric study, the

length of every dipole was fixed at 9.0 cm and the thickness was fixed at 0.5 cm. These

dimensions were chosen to create an array of half-wave dipoles at the center-frequency
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of 1.5 GHz in the L-band (1-2 GHz). These were the range of frequencies for which the

deployable cruciform antenna was designed [2].

The parametric study was focused on optimizing the geometry configuration of the

collinear arrays, but the results from the study were used to design a staggered array

configuration as well. The staggered configuration was considered in the impedance

matching and pattern calculation stages of this research. This was done in order to provide

a point of comparison to the collinear arrays and to show the results of what could be

expected from using a denser array configuration.

It should be noted that Figure 3.1a shows only the two central vertical columns of the

feed depicted in Figure 2.3. The parametric study was limited to analyzing only these

two central vertical columns for two reasons. First, the cross-shaped feed depicted in

Figure 2.3 is rotationally symmetric by 90◦. Thus, the driving point impedance, current

distribution, and far-field pattern calculated for these two vertical columns also apply to

the two horizontal rows if they are rotated by 90◦. Second, the method-of-moments code

used to model the feed in the parametric study is designed around variable configurations

of infinite vertical column arrays of dipoles [13]. One limitation of this code is that it

does not model arrays that are infinite in the horizontal direction [8]. This code, called

SPLAT, which stands for Scattering from Periodic Linear Array of Thin-wire elements,

was originally developed for analyzing finite-by-infinite periodic arrays to study frequency

selective surfaces [8]. The two central columns of the feed in Figure 2.3 were modeled

as a finite-by-infinite array in this parametric study because the number of elements in the

vertical dimension is much greater than the number of elements in the horizontal dimension

(14:1). As such, the computed values for the terminal impedances and current distributions

will be a close approximation to those found on the actual finite array–at least for the

elements towards the center of the column.
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This approximation of using finite-by-infinite arrays simplifies the calculation of the

element currents and terminal impedances through the application of Floquet’s Theorem

as is discussed in Section 3.2.5. By this principle, and through a number of acceleration

routines built into the code, SPLAT quickly solves for the current distributions on the array.

Therefore, a large number of array geometries can be quickly simulated which makes

SPLAT ideally suited for this parametric study. A detailed description of the code and

an explanation of how it was used in this study is provided in Section 3.2.

3.1.2 Parametric Study Approach.

The parametric study was designed in order to test the hypothesis given in [4], which

states that smaller inter-element spacings improve the bandwidth of the array by increasing

the capacitive coupling between elements. The inter-element spacing in the simulations

was controlled in SPLAT by specifying the Dx, Dz, or Dx1,2 and Dz1,2 dimensions shown

in Figure 3.1. These spacing parameters affect the type of capacitance seen between the

dipoles in the array once the elements are excited. For the collinear array, the variation

in DZ affects the tip-to-tip capacitance between the vertical dipoles and the side-by-side

capacitance between the horizontal dipoles. Conversely, the DX variation affects the tip-to-

tip capacitance between the horizontal dipoles and the side-by-side capacitance between the

vertical dipoles. For the staggered array, the horizontal and vertical dipoles are configured

in a parallel-in-echelon formation and the Dx1,2 and Dz1,2 spacings affect the capacitance

seen between the staggered monopole sections. By varying one spacing parameter at a

time and holding the others constant, the parametric study focused on identifying the effect

that each type of capacitive coupling has on the bandwidth of the array. Ultimately, a final

array configuration was chosen based on the results of this parametric study. The final

design incorporated the best combination of the different types of coupling mechanisms in

order to maximize the array’s impedance bandwidth.
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To simulate circular-polarization for the crossed-dipole elements, the horizontal and

vertical dipoles were driven separately by defining two independent voltage generators

at the feed gap between the horizontal and vertical elements. Since the orthogonal

components of each crossed-dipole are excited separately and driven 90◦ out-of-phase to

produce a circularly polarized wave, the horizontal and vertical elements were simulated

as two separate arrays. This was done not only because of the non-interaction between the

orthogonal and out-of-phase elements, but also because treating the horizontal and vertical

arrays separately allowed for smaller Dx and Dz configurations to be implemented for the

collinear arrangement. Although these tighter spacings would not be physically realizable

in the collinear arrays–since any spacing smaller than the length of one monopole section

causes the crossed-dipole elements to touch in Figure 3.1a–these configurations were

included to show the effect on the impedance as the element spacings are brought to their

lower limits. Furthermore, handling these dimensions separately helped distinguish the

effect of tip-to-tip capacitance versus side-by-side capacitance. The separate simulations

also helped distinguish the effect of capacitive coupling in the infinite versus finite array

dimension.

The effect of the ground plane was also investigated in the parametric study. The

ground plane not only serves to direct the radiation from the feed towards the cruciform

reflector, but the literature shows that the inclusion of a ground plane is also a crucial

part of extending the bandwidth of a periodic array [5]. Therefore, the parametric study

investigated the effects of including, excluding and varying the distance of the ground plane

between simulations. The details on how the ground plane was implemented in SPLAT

using Image Theory is provided in Section 3.2.4.

For a given array configuration, the dipoles were driven by defining a 1V excitation

across the terminals of the dipoles via a delta-gap generator definition in the method-of-

moments code. By varying the frequency of this excitation across a one decade range
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from 0.3 GHz to 3.0 GHz (which encompasses the L-band set of frequencies) the value

of the terminal currents for each dipole was calculated and the frequency response of the

array in this band could be observed. The phase of the voltages at the terminals was kept

fixed at a 0◦ phase reference since the feed is not designed to scan when illuminating the

cruciform reflector. The driving point impedance of the dipoles in the array across the 0.3

GHz to 3.0 GHz frequency range was calculated by dividing the terminal currents by the

voltage at the dipole terminals. These driving point impedance values were then plotted on

a Smith Chart in order to calculate and visualize the reflection coefficient and the VSWR

across the frequency range. Figure 3.2 summarizes the parametric study approach for the

collinear array configurations. The categories under each dipole orientation outline which

array parameters are fixed or varying as the frequency sweep excitation is being performed.

Two-Column Collinear Array

Vertical Dipoles

With Ground Plane 
(fixed at 4.5 cm)

Without 
Ground Plane

Varying Distance of 
the Ground Plane

Varying Parameters:

Varying DZ:
DZ: 9.10 cm to 14.00 cm
DX fixed at 10.00 cm

Varying DX:
DZ fixed at 10.00 cm
DX: 1.25 cm to 25.00 cm

Varying Parameters:

Ground Plane Distance:
1.25 cm to 9.00 cm
DZ fixed at 10.00 cm
DX fixed at 10.00 cm

Varying Parameters:

Varying DZ:
DZ: 9.10 cm to 14.00 cm
DX fixed at 10.00 cm

Varying DX:
DZ fixed at 10.00 cm
DX: 1.25 cm to 25.00 cm

Horizontal Dipoles

With Ground Plane 
(fixed at 4.5 cm)

Varying Distance of 
the Ground Plane

Varying Parameters:

Varying DZ:
DZ: 1.10 cm to 25.00 cm
DX fixed at 10.00 cm

Varying DX:
DZ fixed at 10.00 cm
DX: 9.10 cm to 18.75 cm

Varying Parameters:

Ground Plane Distance:
1.25 cm to 9.00 cm
DZ fixed at 10.00 cm
DX fixed at 10.00 cm

* Fixed Parameters:
Dipole Length: 9.00 cm
Dipole Radius: 0.50 cm

Array Geometry Parametric Study Approach

Figure 3.2: Organization of the parametric study divided into the vertical and

horizontal array geometries.

The results of this parametric study are presented in Section 4.1 and were used

to determine an optimal geometry for the collinear array. The optimal geometry was
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determined based on the configurations that produced the tightest clustering of impedance

values around the center frequency of 1.5 GHz when plotted on the Smith Chart. Because

the voltage at the terminals is always fixed at 1V, a tight grouping of impedance values

around the center frequency indicates that the current at the terminals of the dipoles is not

changing greatly with frequency. As will be discussed in Section 4.1, this tight grouping

of impedances across frequency shows the beneficial effect of the capacitive coupling in

the array. This coupling helps keep the terminal currents as constant as possible across the

frequency range. This proves to be advantageous when performing wide-band impedance

matching which transforms the impedance curve by rotating it towards the center of the

Smith Chart. As shown in Section 3.3, tighter impedance curves ensure that as much

of the frequency range as possible is brought towards the center of the Smith Chart and

below a VSWR of 2 (the bandwidth criterion) after matching. Table 3.1 lists all spacing

arrangements for the collinear arrays that were simulated in this parametric study. The

results for a similarly performing staggered array is also presented in Section 4.1.

Table 3.1: Configurations used in the parametric study for the collinear arrays.

Element Orientation Dz Dx Ground Plane Dist. Changing Spacing1 Direction of Change2

1 Vertical 9.10 cm - 14.00 cm 10 cm No Ground Plane Tip-to-Tip Infinite

2 Vertical 9.10 cm - 14.00 cm 10 cm 4.5 cm Tip-to-Tip Infinite

3 Vertical 10.00 cm 1.25 cm - 25.0 cm No Ground Plane Side-by-Side Finite

4 Vertical 10.00 cm 1.25 cm - 25.0 cm 4.5 cm Side-by-Side Finite

5 Vertical 10.00 cm 10.00 cm 1.25 cm - 9.00 cm Ground-Plane Dist. –

6 Horizontal 1.10 cm - 25.00 cm 10 cm 4.5 cm Side-by-Side Infinite

7 Horizontal 10.00 cm 9.10 cm - 18.75 cm 4.5 cm Tip-to-Tip Finite

8 Horizontal 10.00 cm 10.00 cm 1.25 cm - 9.00 cm Ground Plane Dist. –

*Fixed parameters: dipole lengths = 9.0 cm, dipole radii = 0.5 cm, εr=1, µr=1

1: Refers to the type of spacing layout between dipole elements that is changing
2: Indicates whether the changing spacing is occurring in the infinite or finite array dimension

The dimensions for this staggered dipole array configuration are listed in Table 3.2 below:
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Table 3.2: Array parameters used to model the staggered array configuration.

Element Orientation Dz Dz1,2 Dx1,2 Ground Plane Distance

1 Vertical 9.10 cm 4.55 cm 6.75 cm 5.00 cm

2 Horizontal 9.10 cm 4.55 cm 6.75 cm 5.00 cm

*Fixed parameters: dipole lengths = 9.0 cm, dipole radii = 0.5 cm, εr=1, µr=1

3.2 Using SPLAT to Model the Array

SPLAT is an electro-magnetics method-of-moments code developed at the Ohio State

University’s ElectroScience Laboratory [8]. The code was developed to model finite-by-

infinite planar arrays of arbitrarily oriented dipole elements. As mentioned in Section 3.1.2,

this code was used to compute the array currents in the parametric study, from which the

driving point impedances and far-field patterns for the feed were calculated. A complete

description of the theory incorporated into SPLAT is explained in [13] and [8] and will

not be repeated in full detail here. However, an overview of three of the major theory

components behind SPLAT’s operation is necessary in order to describe the approach taken

in this research and to explain some of the results. These three theory components are: (1)

the expression of the array currents using Floquet’s Theorem, (2) the development of the

Green’s Function for an infinite column array of dipoles (from which the expressions for

the near-zone and far-zone E-fields are derived), and (3) the thin-wire method-of-moments

used to compute the array currents. In addition to this overview of the theory, a detailed

description of the approach taken to construct the collinear and staggered column arrays

in SPLAT is provided. Finally, since much of the post-processing of the array currents

and far-field patterns was performed outside of SPLAT in MATLAB, a description of the

code Input/Output (I/O) and the details of the two modes of operation used in SPLAT that

produced the results are provided as well. The code I/O overview, description of the modes

of operation and the method of array construction will be addressed first.
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3.2.1 Code I/O.

SPLAT is a Formula Translation (FORTRAN) program that requires several input files

that must be provided before the program is executed. Although a number of these input

files are optional depending on the simulation parameters, two files that must always be

present are the Command File and the Geometry File.

The Command File specifies which mode of operation the code should be run in

(monostatic pattern, bistatic pattern, or frequency sweep) and specifies a number of global

simulation parameters such as the frequency range and scattering angles. This file also

lists the names of the Geometry File, output files and any auxiliary input files used

in the simulation. The Command Files used in the parametric study are provided in

Appendix A.1. For this parametric study, SPLAT was run in the frequency sweep mode

to calculate terminal impedances and in bistatic pattern mode to calculate the far-field.

The Geometry File specifies the dimensions of the array created in SPLAT. This

file contains information on the physical dimensions of the dipoles, the spacing between

elements and columns, and the material properties in the simulation. The parametric study

was performed by creating a set of Geometry Files that correspond to the parameter settings

specified in Table 3.1. A MATLAB wrapper batch script was then written to execute SPLAT

by looping through these sets of Geometry Files and collecting the output results. Examples

of the Geometry Files used to define the collinear and staggered arrays are provided in

Appendix A.1.

The only other auxiliary file used in this parametric study was the Voltage Vector File.

This file was used to specify the voltages applied at the terminals of the dipoles in the

array. The file is simply a list of complex voltages separated into θ̂ and φ̂ components.

The order of the listed voltages corresponds to the order in which the modes are defined in

the SPLAT simulation environment as is discussed in Section 3.2.4. The terminal voltages

were always set to a real normalized value of 1V for the study. For the vertical dipole
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arrays, the θ̂ component of the voltage was set to 1V while the φ̂ component was set to 0V.

Similarly, for the horizontal dipoles, the φ̂ component was set to 1V while the θ̂ component

was set to 0V. An example voltage file for a collinear array is provided in Appendix A.1.

3.2.2 Frequency Sweep Mode.

The contents of the output file from SPLAT depend on the mode of operation in which

the program is run. For the frequency sweep mode, SPLAT produces an output file which

contains the value of the scattered Electric Field at a user specified output angle, and the

value of the terminal currents for only the very last frequency run in the simulation. Since

the goal of the parametric study was to calculate the terminal impedances using the terminal

currents computed for every frequency, SPLAT was modified to produce a new output file in

frequency sweep mode. This new output file lists the terminal currents for every frequency

in the frequency range specified in the command file (0.3 GHz to 3.0 GHz in this study).

Thus, for the parametric study, the data collected from SPLAT was comprised of

a set of output files containing the value of the terminal currents at each frequency for

all of the geometric configurations specified in Table 3.1. This data was then post-

processed in MATLAB. The MATLAB scripts converted these terminal currents into

terminal impedances by dividing them by the terminal voltages. These impedance values

were then plotted on a Smith Chart normalized to 50Ω. The reflection coefficient at the

terminals of the dipoles was calculated using the following equation:

Γ =
ZL − Z0

ZL + Z0
; Z0 = 50Ω (3.1)

where ZL is the terminal impedance and Z0 is the impedance of the transmission line

connecting the generator to the terminals of the dipoles. For this study, a characteristic

impedance of 50Ω was defined for this feedline from the generator.
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From the reflection coefficient, the VSWR at the terminals of the antenna was

calculated by the following equation:

VS WR =
1 + |Γ|

1 − |Γ|
(3.2)

The VSWR was plotted across the 0.3 GHz to 3.0 GHz range on a separate graph

accompanying the Smith Chart for each geometry configuration listed in Table 3.1.

3.2.3 Bistatic Pattern Mode.

To obtain the far-field plots, SPLAT was run in bistatic pattern mode using the same

Geometry and Voltage Vector Files from the frequency sweep simulations. The Command

File for a bistatic pattern simulation specifies the scattering angles relative to the axis of the

array for which the scattered field values are computed. The frequency of excitation and the

angular resolution of the scattered field is also specified in this Command File. For a given

excitation vector, the observation angles for the bistatic scattering calculated by SPLAT is

limited to variation only in the azimuthal direction (φ̂). The θ̂ observation angle is fixed in

the specular direction [8].

The voltages defined as the excitation in the parametric study performed in this

research are always completely polarized in the φ̂ or θ̂ direction. While these voltages

simulate the signal supplied from the generator, these voltages can also be thought of as

being the φ̂ and θ̂ components of the excitations caused by a perfectly circularly polarized

plane-wave impinging on the surface of the array at an angle normal to the ẑ axis. That is

an incident wave with θin = 90◦.

In this equivalent hypothetical scenario, the horizontal dipoles are excited only by

the φ̂ component of the circularly polarized incident E-field and the vertical dipoles are

excited only by the θ̂ component of the circularly polarized incident E-field. All of this

is to say that the output observation angle, θout, for all of the bistatic pattern simulations

performed in this study is fixed at 90◦ based on the voltage vector definitions. This is
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because SPLAT calculates the θout output angle as θout = π − θin [8]. Since this study

uses SPLAT to simulate a radiating antenna, no incident wave is defined as an excitation.

Therefore, the θin excitation angle and θout are defined solely via the voltages in Voltage

Vector File.

For this reason, all of the far-field plots calculated using SPLAT in this study are

limited to the great circle plane of θ = 90◦ with φ varying from 0◦ to 360◦. In other

words, SPLAT in bistatic pattern mode was only used to calculate the azimuthal variation

of the far-field pattern. Additionally, based on the voltage vector definition and the separate

simulation of the horizontal and vertical arrays, the far-field plots are divided into two

figures: one for the Eφ component of the radiated field from the horizontal dipoles, and

one for the Eθ component from the vertical dipoles. These two separate plots represent

the radiation pattern for the circularly polarized array and show where the Eφ and Eθ

components are always 90◦ out-of-phase.

The output file for a bistatic pattern simulation in SPLAT lists the θ̂ and φ̂ components

of the Electric Field for the φout scattering angles specified in the command file. The pattern

was calculated for excitations at the center frequency of 1.5 GHz, the limits of the L-band

at 1.0 GHz and 2.0 GHz, and for the limits of the impedance bandwidth calculated for each

configuration as discussed in Section 3.3. The specific details on how the outputs of SPLAT

were used to plot the far-field using MATLAB is discussed in Section 3.4.

In order to produce the elevation pattern for the far-field, the electric field was

calculated outside of SPLAT in MATLAB. The array current distribution on the individual

dipole elements found using SPLAT were exported to MATLAB. The far-field from a single

dipole element was found and then multiplied by the appropriate array factor to calculate

the total field. This method approximates the current distribution on the finite array using

the infinite array currents calculated using SPLAT.
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3.2.4 SPLAT Geometry Definitions and Array Construction.

Each infinite column in SPLAT is characterized by the physical dimensions of an

arbitrarily selected reference dipole within that infinite column and the vertical spacing,

Dz, between the dipoles in that column. In SPLAT, these reference dipoles are referred to

as cells. The cell is constructed by the user through the Geometry Input File. The reference

dipole is divided into separate nodes and segments as depicted in Figure 3.3.

x

y

z

Segment 25

Segment 20

Segment 15

Segment 10

Node 30

Node 25

Node 20

Node 15

Node 10

Figure 3.3: SPLAT Cell

The nodes and segments are given unique integer labels in the geometry definition.

This is done so that a unique current mode (basis function) can be defined over the different

sections of the dipole as shown in Figure 3.5. Each mode is assigned a unique integer label

once SPLAT is run and these labels are noted in the output file. The voltages defined in

the Voltage Vector File must be associated with the correct mode label in order to apply the

voltages at the correct location in the array.

The reference dipole defined by the cell definition is replicated along the ẑ direction

to form an infinite column array with the Dz spacing between dipoles that is specified in
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the Geometry File. Cell definitions can then be duplicated with different coordinate offsets

applied to the center of the reference dipole in order to construct multi-column arrays. If the

Dz spacing is the same for the other columns, the Geometry File allows identical columns

to be defined as an array using a single cell definition. A center coordinate for the array

is defined separately from the center coordinate of the reference dipole. The coordinates

for all of the dipoles in that geometry are then referenced to the center coordinate of the

array. This approach was used to construct the two-column collinear array as shown in

Figure 3.1a. Two different cells were defined to construct the horizontal dipole array and the

vertical dipole array separately. These different cells were created using separate Geometry

Files in order to keep the horizontal dipole simulations separate from the vertical dipole

simulations. In conducting the parametric study, the Dz and Dx offsets were changed in the

Geometry Files to make the element spacings either closer or farther apart.

The array feature was also used to create an image array in order to simulate an infinite

Perfect Electric Conductor (PEC) ground plane. For current sources above a PEC ground

plane, the total field in the region above the ground plane can be modeled using Image

Theory. The total field which is a superposition of the reflected and forward traveling wave

from the current sources are equivalent to the superposition of fields from the actual current

sources and the fields radiated by image currents flowing in the opposite direction located

in the image plane [7]. The ground plane in the feed design shown in Figure 2.3 is located

λ/4 (for λ at 1.5 GHz) behind the array. This was done in order to redirect the −ŷ radiation

from the feed back towards the cruciform reflector by a reflection off of the ground-plane.

The λ/4 spacing produces a reflected wave that is in-phase by the time it reaches the feed

elements. The reflected wave then constructively interferes with the forward propagating

wave from the crossed-dipoles in the direction towards the cruciform reflector. The SPLAT

simulation replaces the finite ground plane depicted in Figure 2.3 with an idealized infinite

ground plane for simplicity in the simulation. In order to do this using Image Theory, an
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image array in SPLAT was placed at λ/2 behind the actual array. This places the image

array in the image plane which is double the distance away from the array as the true ground

plane. Here, λ = 20 cm at the center frequency of 1.5 GHz, so the image distance in SPLAT

was set to 10 cm. The crossed-dipole arrays with their respective image ground planes as

constructed in SPLAT are depicted in Figure 3.4.
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Figure 3.4: (a) Collinear arrangement with image array and (b) Staggered arrange-

ment with image array to simulate an infinite ground plane

In order to produce currents flowing in the opposite direction for the array in the

image plane, a voltage of -1V instead of 1V was applied to the terminals of the dipoles in

the image array. This is equivalent to defining identical currents as those in the actual array,

but with unit vectors pointing in the opposite direction for the currents in the image array.

29



The validity of this approach was confirmed by observing the output currents calculated

by SPLAT. The image currents that are calculated always have the same magnitude but

opposite sign in the output files. An example output file showing this is provided in

Appendix A.1.

3.2.5 SPLAT Theory and Principles of Operation.

SPLAT calculates the currents induced on a planar array of dipoles by an excitation in

the form of an incident wave or through voltages impressed at the terminals of the dipoles

[8]. These currents are then used to calculate the scattered field. The currents generate

the near-field which governs the mutual coupling between array elements, and the currents

also generate the far-field which gives the radiation pattern for the array. For this study,

the currents are also used to calculate the impedances seen at the terminals of the dipoles.

Since the current plays such an important part in deriving the parameters investigated in

this study, the following three sections will look into how they are generated in more detail.

These sections will explain how changing the array’s physical parameters affects the value

of the currents. Additionally, an explanation of how the currents are solved for using the

method-of-moments is provided.

3.2.5.1 Infinite Column Array Floquet Currents.

The major advantage of using infinite periodic arrays to model the 108-element

crossed-dipole feed is that Floquet’s Theorem can be used to succinctly describe the

currents on all of the array elements. Floquet’s Theorem states that: ”the currents on all the

elements in an infinite column are identical in magnitude and differ in phase by the same

phase progression as the excitation applied to the column.” [11], [12]. The consequence of

Floquet’s Theorem is that the currents on hisall the elements in the infinite column can be

related to and described by the current on an arbitrarily selected reference element within

the column. When the conditions for applying Floquet’s Theorem are met, the currents on

the elements of an infinite column that are described in this fashion are known as Floquet
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Currents. The conditions are that the element spacings must be uniform and the phase of

the excitation between the elements must be periodic [11].

For this study, the excitations are the voltages impressed at the terminals of the array

dipoles. For both the collinear and staggered arrays these voltages are all set to a normalized

value of 1V with no phase progression (0◦) applied across the array (no beam steering).

Therefore, in this study all of the element currents in an infinite column are identically

equal to the current on a reference dipole in that column. SPLAT uses a method-of-

moments routine to solve for the value of this reference current using information about the

excitation and the field equations that dictate the mutual coupling between the elements of

infinite arrays. Since the currents on all of the elements in a single infinite periodic column

can be expressed using only the reference current, the problem is reduced to solving for

just the unknown reference current for each infinite column in the geometry.

Given that the current distribution on a dipole is usually some variation of a sinusoidal

function, the currents on the dipole elements in SPLAT are modeled using weighted

combinations of the normalized sinusoidal functions given in the equation shown below

[13]:

F(l′) =


p̂(a) sin β(l(a) − |l′|)

sin βl(a) ; current on the ”a” monopole

p̂(b) sin β(l(b) − |l′|)
sin βl(b) ; current on the ”b” monopole

(3.3)

The current is defined separately for each monopole section where p̂(a) and p̂(b) are unit

vectors that point in the direction of each monopole’s orientation (this allows for bent

monopoles to be defined in the SPLAT framework). The length of each monopole segment

is represented by l(a) and l(b), which allows for asymmetric dipoles to be defined. The

variable l′ is the distance variable along the monopole segments. In general, the currents

given by Equation 3.3 can be rewritten for lossy media through using the propagation
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constant γ = α + jβ instead in Equation 3.3. By the identity − j sin( jz) = sinh(z),

Equation 3.3 becomes:

F(l′) =


p̂(a) sinh γ(l(a) − |l′|)

sinh γl(a) ; current on the ”a” monopole

p̂(b) sinh γ(l(b) − |l′|)
sinh γl(b) ; current on the ”b” monopole

(3.4)

Equation 3.4 is used to define the current distribution on the dipoles in SPLAT. To use

method-of-moments terminology, Equation 3.4 is the form of the basis function that models

the current on the dipoles [8]. SPLAT uses overlapping basis functions, referred to as

modes, to construct the current. For the parametric study, three overlapping modes were

used per dipole. Equation 3.4 is defined such that the value of the current is equal to zero at

one endpoint and is equal to one at the other end point. This is shown in Figure 3.5 where

each mode current is constructed from two monopole current segments:
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Figure 3.5: Unweighted sinusoidal basis functions

The two current segments both approach, and are equal to one, at the center of each mode.

As depicted in Figure 3.5, the dipole is also divided into four segments with five nodes,
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with the terminal of the dipole defined at the central node. This is consistent with the cell

geometry definition shown in Figure 3.3.

The unknowns that are solved for in the method-of-moments routine are the weighting

coefficients that scale these individual current basis functions. Since the basis functions are

defined such that they are equal to one at one endpoint and zero at the other, at the terminals

of the dipole, the three mode currents overlap such that the terminal current is completely

defined by Mode 2 and only Mode 2. Since the value of the basis function defined in

Equation 3.5 is equal to one at the terminal, the terminal current is completely defined by

just this weighting coefficient. This property was used to extract the value of the terminal

currents directly from the output file’s list of complex current coefficients. The value of the

current at the terminals did not have to be reconstructed from the superposition of the three

weighted basis functions as is necessary elsewhere on the dipole.

Through these mode definitions and the application of Floquet’s Theorem, the terminal

currents for every element in an infinite column array are described completely by one

number: the coefficient for the basis function at the central terminal of the reference dipole.

3.2.5.2 Column Array Green’s Functions, Near-Zone E-Field and Far-Zone

E-Field.

The mode currents in SPLAT are used to calculate the near-zone and far-zone E-Fields

for the array. The near-zone E-Field is used to calculate the mutual coupling between

the array elements. Both the near-field and the far-field are obtained by first deriving the

Green’s Function for a column array of infinitesimal current sources [5]. This Green’s

Function is then integrated along the length of the current mode expansions to obtain the

Green’s Function for the finite-length dipoles in one column array. A full derivation is

provided in [5] and [13], but an abbreviated derivation is given below:

The infinitesimal current on the nth element in an infinite column array is described

by the following equation:
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In = I0e− jβsznDz (3.5)

where I0 is the magnitude of the current on the reference element, Dz is the spacing between

dipoles, and β is the propagation constant. Equation 3.5 was derived assuming that a plane

wave was used to excite the current. Therefore, the phase of the current is described using

sz, which is the ẑ component of the unit vector along the direction of propagation for that

incident wave. For an excitation caused instead by terminal voltages, the phase term could

be expressed by an equivalent periodic phase-progression applied across the column. As

discussed in in the previous section, the infinitesimal element currents expressed using

Equation 3.5 are used to weight the current distribution functions of Equation 3.4 to give a

complete description of the current distributions on each dipole in the array:

I = InF(l′) (3.6)

With the current now defined using the sinusoidal basis functions and Floquet’s

Theorem, the rest of the approach for deriving the near-field and far-field equations involves

first deriving the Green’s Function from the magnetic vector potential A of the array. A is

found through solving the inhomogeneous vector wave equation expressed in cylindrical

coordinates as:

∇2A + β2A = −J

1
ρ
∂
∂ρ
ρ ∂
∂ρ

A + ∂2

∂z2 A + β2A = −J
(3.7)

The current density J for the entire infinite column of point currents is expressed using

Equation 3.5, yielding:

34



J = p̂ I0dl e− jβsznzδ(y)δ(x)
∞∑

n=−∞

δ(z − nDz) (3.8)

The solution for the magnetic vector potential which satisfies Equation 3.7 using the

expression above for the current density is [13], we have:

A(ρ, z) = p̂
I0dl
j4Dz

∞∑
n=−∞

H(2)
0 (βrρ ρ) e− jβrzz (3.9)

where the distance variable rz = sz + nλ
Dz

, and rρ =
√

1 − r2
z when r2

z < 1, and

rρ = − j
√

r2
z − 1 when r2

z > 1. From the magnetic vector potential A, the electric field

for an infinite column of infinitesimal current sources can be computed from:

E =
1

jωε
(∇∇ · A + β2A) (3.10)

The final result describes the field radiated from the infinite column of infinitesimal

current sources located on the ẑ axis. When the equation is written to describe the field

from the array at any arbitrary location (so long as it is parallel to the z-axis), the result is

the following [13]:

dE(R|R
′
) = −ZI0dl

4Dz

∑∞
n=−∞ e− jβrz(z−z′) ·{

x̂
[
px

(
(r2

z + r2
ρv

2
y) βH(2)

0 + (v2
x − v2

y)rρ
H(2)

1
ξ

)
+ pyvxvy(2rρ

H(2)
1
ξ
− βr2

ρH(2)
0 ) + pz( jβrρrz)vxH(2)

1
]

+ŷ
[
pxvxvy(2rρ

H(2)
1
ξ
− βr2

ρH(2)
0 ) + py

(
(r2

z + r2
ρv

2
x) βH(2)

0 − (v2
x − v2

y)rρ
H(2)

1
ξ

)
+ pz( jβrρrz)vyH(2)

1
]

+ẑ
[
(pxvx + pyvy)( jβrρrz)H

(2)
1 + pzβr2

ρH(2)
0

] }
(3.11)
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The argument of the Hankel functions in the equation is βrρξ and ξ = |ρ − ρ′| =√
(x − x′)2 − (y − y′)2. The shifted distance variables vx and vy are vx = (x − x′)/ξ and

vy = (y− y′)/ξ. Z is the wave impedance of the medium which is equal to
√

jωµ
σ + jωε . The

d in front of E(R|R
′
) indicates that this equation is for an infinite column of periodically

spaced infinitesimal current point sources. The Hankel functions of the first and second

kind in Equation 3.11 indicate that the field is comprised of a superposition of ingoing

(H(0)
m ) and outgoing (H(1)

m ) cylindrical waves emanating from each point source.

From Equation 3.11, the equation for the electric field from one of the sinusoidal basis

functions (modes) comprising the current on the reference dipole of the array (which by

Floquet’s Theorem describes the current on every dipole in the array) can be found by

integrating Equation 3.11 along this single basis function. This means that Equation 3.11

is a Green’s Function which relates the electric field to the currents from the dipoles of the

infinite array. As mentioned previously, these currents of the infinite number of elements

are represented compactly as a single equation (Equation 3.5). These currents are broken

down further into a finite number of basis functions per dipole and each one of these basis

functions is called as a Floquet mode. Therefore, all of the currents for every element in

the infinite array can be described using this finite set of modes. The field contribution

from each mode is found through the convolution of the mode current distribution with the

Green’s Function of Equation 3.11. Again the basis function is defined in Equation 3.5.

The result of this integration of Equation 3.11 is an expression for the Electric Field given

by:

E s(R) = −
ZIso

4Dz

∞∑
n=−∞

∫
ds I(s)e− jβrz(z−z′) · Kn(β, x, y; x′, y′, p̂) (3.12)
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where Kn is the kernel given by the Green’s Function of Equation 3.11 and s indicates the

expansion mode for which the field is being calculated. Equation 3.12 is used to calculate

the far-field pattern for the array.

For the calculations of the mutual coupling between array elements using the near-

zone E-field, the expansion into Floquet modes is not used in SPLAT. Instead a closed

form expression for the electric field from a single dipole using the current distribution

definition of Equation 3.5 is used. The expression is found by considering the field from

each monopole segment separately yielding [13]:

E
(a)

=
ZI0

4π sinh γl(a)

{
R̂0 − p̂(a)(R̂0 · p̂(a))
R0[1 − (R̂0 · p̂(a))2]

[sinh γl(a)e−γR0

+(R̂0 · p̂(a)) cosh γl(a)e−γR0 − (R̂a · p̂(a))e−γRa]

+p̂(a)[e−γRa

Ra
− cosh γl(a) e−γR0

R0
]

}
− R̂0

ZI0
4π

e−γR0

R0
(1 + 1

γR0
)

(3.13)

In Equation 3.13, the unit vector R̂0 points from the terminal of the dipole to the

observer location, R̂a points from the tip of the a-monopole to the observer and p̂ is the

direction of current flow on the a-monopole segment. R0 and Ra are the distances from

the terminal to the observer, and the tip of the a-monopole to the observer respectively.

An equivalent expression can be written for the b-monopole segment of the dipole. Using

Equation 3.13 the fields from the individual elements in the array are added together to find

the value of the field at the observation location. SPLAT incorporates several acceleration

routines to cause the summations in the near-field calculations to converge faster [13], [8].

3.2.5.3 Thin-Wire Method-of-Moments.

The final portion of the description of SPLAT in this chapter is an overview of how

SPLAT solves for the unknown array currents using the method-of-moments. The approach

behind the method-of-moments technique is to first model the problem by defining a
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response function (u), an excitation function ( f ), and an operator or kernel describing the

system (L) [18] given by:

Lu = f (3.14)

For the scattering problem in a SPLAT simulation, the kernel is the Green’s Function

for an infinite column array given in Equation 3.12, or the closed-form expression for the

fields from a single dipole in Equation 3.13. The excitation functions are either an incident-

wave impinging on the array, or the voltages that are impressed at the terminals of the

dipoles in the array as is the case in this study. The unknowns are the currents which

correspond to the response function in the problem.

Next, the problem is discretized by expanding the unknown currents that form the

response function into a set of basis functions with unknown coefficients. These basis

functions are the normalized sinusoidal functions given in Equation 3.4, which are the

Floquet modes for an infinite column array that span the length of the dipole. Therefore, the

unknowns now are the coefficients that weight these sinusoidal basis functions represented

by Equation 3.6. The discretized set of currents that approximate the actual currents is

represented by û in the system model:

Lû ' f (3.15)

The residual error after the discretization is defined as:

Lû − f , r (3.16)

The next step is to define the excitation and enforce the boundary conditions on the

scatterer. In SPLAT’s thin-wire method of moments formulation, the scattering problem is

modeled using the Surface Equivalence Principle by replacing the wires of the antenna by
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equivalent electric and magnetic surface current densities. The equivalent surface current

densities are given by

J
eq
s =

N∑
k=1

Ik

2πak
F

e
k(l
′), and M

eq
s =

N∑
k=1

Zs,nIn

2πak
F

e
k(l
′) (3.17)

where the index k refers to the mode k, Ik represents the unknown current (the weighting

coefficient for the current basis function), ak is the radius of the dipole, and F
e
k(l
′) are

the basis functions given by Equation 3.4. The magnetic surface currents are related to

the electric surface currents through the surface impedance Zs. These equivalent currents

radiate the scattered field exterior to the wires and the negative of the incident fields interior

to the wire [13]. The condition to be enforced in the scattering problem is to ensure that

the total field inside of the wire is equal to zero, i.e:

E = E
inc

+ E
s

= 0 (3.18)

Using the equivalent surface currents, the scattered field is represented as the super-

position of the radiated fields from the individual basis function currents. Equation 3.12 or

Equation 3.13 are used for E, yielding:

E
s

= E(J
eq
s ; r′) + E(M

eq
s ; r′) = 0 (3.19)

E
s

= E(
N∑

n=1

In

2πan
F

e
n; r′) + E(

N∑
n=1

Zs,nIn

2πan
F

e
n; r′) = 0 (3.20)

E
s

=

N∑
n=1

In

E(
F

e
n

2πan
; r′) + E(

Zs,nF
e
n

2πan
; r′)

 = 0 (3.21)
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At this point in the problem formulation, there are N unknowns representing the N

modes or basis functions that were used to discretize the unknown currents. While N

number of equations could be generated by trying to enforce the boundary condition at

N different points along the wire, the more accurate method-of-moments technique is to

simultaneously generate the N number of equations by minimizing the residual error, r.

This is done by forcing an orthogonality condition between the residual error and a set of

testing functions across the entire problem domain using the inner product definition:

0 = 〈tm, Lû − f 〉 (3.22)

〈tm, Lû〉 = 〈tm, f 〉 (3.23)

Using Galerkin’s method the testing functions are of the same form as the basis functions

Fk(l′) [18] so the inner product of Equation 3.23, is computed on Equation 3.18 as:

E|inside wire = 0∫
E · Fkdl′ =

∫
Fk · 0dl∫

E · Fkdl′ = 0; and E = E
inc

+ E
s

(3.24)

∫
E · Fkdl′ =

∫ (
E

inc
+ E

s
)
· Fkdl′ = 0 (3.25)

∫ E
inc

+

N∑
n=1

In

E(
F

e
n

2πan
; r′) + E(

Zs,nF
e
n

2πan
; r′)

 · Fkdl′ = 0 (3.26)

∫ (
E

inc
)
· Fkdl′ = −

∫  N∑
n=1

In

E(
F

e
n

2πan
; r′) + E(

Zs,nF
e
n

2πan
; r′)

 · Fkdl′ (3.27)

Equation 3.27 generates the sufficient number of equations necessary to solve for the N

unknowns in the scattering problem. These are the N unknown current coefficients In that
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weight the N Floquet mode currents on the dipoles in the array. Equation 3.26 can be

decomposed into a voltage vector and an impedance matrix:

Vk =

∫ (
E

inc
)
· Fk(l′)dl′ (3.28)

Zk,n = −

∫
E(

F
e
n

2πan
; r′) · Fk(l′)dl′ + E(

Zs,nF
e
n

2πan
; r′) · Fk(l′)dl′ (3.29)

Vk = Zk1I1 + Zk2I2 + ... + ZkN IN → V = ZI (3.30)

V =

[
V1,V2, ...VN

]T

, I =

[
I1, I2, ...IN

]T

, Z =



Z11 Z12 . . . Z1N

Z21 Z22 . . . Z2N

...
...

. . .
...

ZN1 ZN2 . . . ZNN


(3.31)

With the voltage vector known for the given problem and the impedance matrix

filled by Equation 3.29, the vector of unknown complex current coefficents can then be

solved. For the particular SPLAT simulations run in the parametric study performed in this

research, the vector of voltages was supplied using the Voltage Vector Input file.

3.3 Stepped Transmission Line Wide-band Matching

An example of the terminal impedances plotted on a Smith Chart for one of the

collinear array configurations is shown in Figure 3.6. Constant VSWR values are

represented graphically as circles centered at Z = 1.0 + j0.0Ω on the Smith Chart. The

dotted circle in blue is the circle of impedance values that correspond to a VSWR of 2 as

defined by Equation 3.2.
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Figure 3.6: Terminal impedances plotted on Smith Chart

At a VSWR of 2, the reflection coefficient Γ between the terminals of the antenna and

the 50Ω transmission line from the generator is equal to 1/3 by Equation 3.1. This value of

Γ corresponds to a reflected power loss at the terminals of the dipole of 11.1%. A VSWR

of 2 is generally regarded as a good match between the antenna and the transmission line

and serves as the criteria for determining the impedance bandwidth in this study. Since the

Smith Chart is a polar plot of normalized impedances, the value of Z = 1.0 + j0.0Ω at the

center of Figure 3.6 represents a true unnormalized impedance of 50Ω. The characteristic
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impedance Z0 of the transmission line from the generator to the terminals of the dipoles

used in this study is purely real and has a value of 50Ω. Therefore, a normalized terminal

impedance of ZL = 1.0 + j0.0Ω provides a perfect conjugate match between the impedance

of the line and the impedance of the load. At this location of ZL at the center of the Smith

Chart, the VSWR is equal to 1, and no power is reflected back from the dipole towards the

generator.

As seen in Figure 3.6, although the terminal impedances for the frequencies around the

L-band are clustered together fairly closely to ZL

∣∣∣
1.5 GHz

, these impedance values lie outside

of the VSWR of 2 circle. The goal of wide-band impedance matching is to bring as much

of this impedance curve in towards the center of the Smith Chart as possible. In this case,

the objective was to bring the VSWR below 2 for the L-band set of frequencies.

3.3.1 Single-Stage Stepped-Transmission Line Matching.

The wide-band matching technique used to transform the driving point impedances

seen at the terminals of the dipole is the stepped transmission line matching technique. This

technique as described in [5] uses sections of transmission line with different characteristic

impedances placed in series between the 50Ω line from the generator and the dipole

terminals. These different segments of transmission line transform the terminal impedances

and change the reflection coefficient Γ between the segment junctions. The result is that the

matching network moves the impedance curve towards the center of the Smith Chart. The

single-stage stepped-transmission line matching network is depicted in Figure 3.7a. The

impedance transformation seen between the voltage and current waveforms as they travel

through a length of transmission line is dictated by the transmission line equation [19]:

Z1 = Z01
ZL + jZ01 tan βL1

Z01 + jZL tan βL1
(3.32)
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In Equation 3.32, ZL is the input impedance seen directly at the terminals of the dipoles,

Z01 is the characteristic impedance of the transmission line inserted between the terminals

of the dipole, and the 50Ω feedline, β is the propagation constant of the Z01 line, and L1 is

the length of the inserted Z01 transmission line.

Z0 = 50Ω Z01 = 100Ω

L1

Z1 ZL

(a)

Z0 = 50Ω Z02 = 70Ω Z01 = 200Ω

L1

Z1 ZL

L2

Z2

(b)

Figure 3.7: (a) Single-stage stepped transmission line matching at dipole terminals.

(b) Dual-stage stepped transmission line matching at dipole terminals.

The result of applying Equation 3.32 is a clockwise rotation (direction towards the

generator) around the Smith Chart which transforms the original input impedance ZL into

Z1. If Z01 was equal to Z0, then the transformed impedance Z1 would have the same Γ

and VSWR values as the original input impedance ZL. In this case, Equation 3.32 simply

describes the value of the impedance as it rotates on a constant VSWR circle on the Smith

Chart as the signal moves down the 50Ω feedline through the length L1. The transformed

input impedance Z1 will have rotated around the Smith Chart on its original VSWR circle

through a rotation angle corresponding to the length of L1. After traveling λ/2 down the

50Ω transmission line, Z1 would again equal ZL with no change to the reflection coefficient

or the VSWR.

However, if the inserted section of transmission line has characteristic impedance Z01

that does not equal Z0 as depicted in Figure 3.7a, then the input impedance ZL and the

reflection coefficient seen at the junction between the Z01 line and the dipole terminals
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would instead be plotted on a Smith Chart normalized to Z01 as shown in Figure 3.8b.

The ZL impedances plotted on this Smith Chart normalized to Z01 describes the reflection

coefficient between the antenna terminals and the beginning of the Z01 line.
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Figure 3.8: (a) Terminal impedances normalized to Z0 = 50Ω (b) Terminal impedances

normalized to Z01 = 100Ω (c) Transformed impedances normalized to Z01 = 100Ω (d)

Transformed impedances normalized to Z0 = 50Ω

Equation 3.32 again describes the impedance transformation that take place as the

voltage and current waves move down the L1 length of Z01 line. The resulting impedance
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transformation after moving through the Z01 line is show in Figure 3.8c. As seen in

this figure, ZL for the center frequency has now been transformed to the real axis to an

impedance value of ZL = 0.5 + j0.0. The rest of the impedance curve has also rotated

clockwise towards the generator although ZL for each frequency experiences a different

amount of rotation based on Equation 3.32. (*Note that β also changes with λ.)

Finally, after traveling down the Z01 line through the length L1, the voltage and current

waves encounter the Z0 = 50Ω line which connects the network the rest of the way back to

the generator. In order to describe the reflection coefficient between the end of the Z01 line

and the start of the Z0 line, the value of the impedances at the end of the Z01 line are plotted

on a Smith Chart normalized to Z0 = 50Ω as shown in Figure 3.8d.

By carefully choosing the length of the Z01 line and the characteristic impedance of

this segment, the terminal impedances have been transformed and much of the impedance

curve has been brought inside of the VSWR of 2 circle as seen by comparing Figure 3.8a

and Figure 3.8d. For the single-stage stepped-transmission line matching technique, the

general approach was to focus on the impedance at the center frequency of 1.5 GHz and

add the appropriate length of Z01 line to bring it into the center of the Smith Chart for a

perfect conjugate match. The amount of line necessary to produce the desired rotation can

be obtained from reading the corresponding distance in wavelengths towards the generator

as measured on the perimeter of the Smith Chart. In this example, the rotation of 119◦ of

ZL

∣∣∣
1.5 GHz

from Figure 3.8b to Figure 3.8c corresponds to adding 0.166λ (or 3.32 cm) of

100Ω line.

As shown by Figure 3.8c, the impedances associated with the higher frequencies

undergo a greater amount of rotation relative to the lower frequencies. The end effect is an

undesirable unraveling of the impedance curve which spreads out the terminal impedances

across the Smith Chart. This effect is exacerbated if the original impedance curve was not
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tightly wound to begin with. For this reason, the goal of the parametric study was to find an

array configuration that produced the tightest possible curve to minimize this unraveling.

3.3.2 Two-Stage Stepped-Transmission Line Matching.

The unraveling of the impedance curve through the impedance transformation can be

partially mitigated by using multiple sections of transmission lines. A two-stage stepped-

transmission line matching network accomplishes the impedance matching by staggering

the impedance transformations across two sections of transmission line with different

characteristic impedances. For this matching network, Equation 3.32 is then applied twice:

first between the junction between the dipole terminals and the Z01 transmission line, and

then between the Z01 and Z02, transmission line. When Equation 3.32 is applied at the

second junction, ZL would be replaced with Z01, Z01 would be replaced with Z02 and the

length L1 would be replaced by L2, which is the length of the Z02 transmission line. The

propagation constant β is the value for the medium inside of the Z02 line.

The general approach for using the two-stage stepped-transmission line technique is

to first rotate ZL

∣∣∣
1.5 GHz

onto the real axis of the Smith Chart using the first Z01 transmission

line section. Then, if the second Z02 section of transmission line is a quarter-wavelength

long, then Equation 3.32 is reduced to:

Z2 = Z02
Z01 + jZ02 tan βL2

Z02 + jZL2 tan βL2
; L2 = λ/4, β = 2π/λ (3.33)

Z2 =
Z2

02

Z1
; (3.34)

Equation 3.34 represents a purely real transformation of the impedance Z1 to Z2. If Z2 can

be set to 50Ω, then the second-stage has successfully transformed the normalized terminal

impedance ZL

∣∣∣
1.5 GHz

to 1.0 + j0.0Ω for perfect conjugate match with the 50Ω line. This

impedance transformation process is visualized by sliding Z1 on the real axis to the center
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of the Smith Chart. The appropriate value of Z02 that is required to produce this purely real

transformation which brings Z1

∣∣∣
1.5GHz

to the center of the Smith Chart can be solved for by

setting Z2 equal to 50Ω in Equation 3.34, yielding:

Z02 =

√
(Z1

∣∣∣
1.5GHz

)(Z2); (3.35)

Z1

∣∣∣
1.5GHz

is known from the output of Equation 3.32 applied after the first Z01 section

of transmission line. For the crossed-dipole arrays investigated in this study, the added

sections of transmission line had characteristic impedances limited to the values used in

commonly available coaxial cables: 70Ω, 100Ω, and 200Ω. Figure 3.9 demonstrates the

impedance transformation process using the two-stage stepped-transmission line technique.
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Figure 3.9: (a) Terminal impedances normalized to Z0 = 50Ω (b) Terminal impedances

after first section of transmission line (c) Terminal impedances after second quarter-

wave section of transmission line (d) Terminal impedances after second section of

transmission line with length slightly less than a quarter-wavelength
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As shown in Figure 3.9c and Figure 3.9d, some fine tuning of the length of the added

sections of transmission lines could be performed to try and bring more of the curve into

the VSWR of 2 circle. To help this fine tuning process, a MATLAB script was written to

observe the effect of finely varying the length of the transmission line using a Graphical

User Interface (GUI). This script uses a slider to gradually adjust the length of the second

transmission line. This script was also used for the single-stage matching technique to

try make fine adjustments for that network as well. A screenshot of this GUI is shown in

Figure 3.10.

Figure 3.10: MATLAB GUI for fine tuning transmission line length

The wide-band matching was performed at the terminals of the reference dipoles for

each of the infinite columns defined in SPLAT. The horizontal and vertical dipole arrays

were simulated separately, and therefore, a separate wide-band matching network was

designed for the dipole arrays in each orientation. This would be equivalent to attaching
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separate matching networks for the two independently driven dipole ports at every crossed-

dipole element on an actual physical implementation of the antenna. The coupling effect

of the feedlines or the matching networks was limited to this level of fidelity and this study

does not consider the behind the ground-plane part of the design problem. The stepped-

transmission line wide-band matching portion of this study formed the final stage of the

bandwidth optimization section.

3.4 Plotting the Array Currents and the Far-Field

As discussed in Section 3.2.5.1, SPLAT’s method-of-moments routine solves for the

coefficients of the sinusoidal expansion functions used to model the current on the dipole

elements as depicted in Figure 3.5. These coefficients were used to weight the basis

functions to reconstruct and plot the current distribution on the elements in the array as

shown in Figure 3.11.

Figure 3.11: Current distribution reconstructed from weighted basis functions
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Although the impedance curves on the Smith Chart show the variation in the terminal

currents across the 0.3 GHz to 3.0 GHz frequency range, these current plots also show the

changing current distribution across the length of the dipole element. The effect of mutual

coupling between neighboring dipoles along the length of the element, especially in the

finite-array dimension, can be seen once these currents are plotted.

The shape of the current distributions on the array elements also provides some

physical insight in explaining the shape of the far-field patterns. SPLAT calculates the

far-field values by applying Equation 3.12, which incorporates the element currents in the

pattern function term. Therefore, a plot of the current distribution helps provide some

visual indication of when strong side-lobes start appearing in the frequency range. The

current and far-field plots help set limits on the pattern bandwidth, which is narrower than

the impedance bandwidth found from the results of the parametric study, and the stepped-

transmission line wide-band matching solution. The real, imaginary, and absolute value of

the terminal currents were plotted for the various array configurations.

The azimuthal far-field patterns are produced by running SPLAT in bistatic pattern

mode as described in Section 3.2.3. Since the image arrays simulate an infinite ground-

plane behind the array, only the pattern in the region above the ground plane was kept from

the results calculated by SPLAT. For the elevation patterns, the current distributions found

in SPLAT as described in Section 3.2.5.1 were first exported to MATLAB. The far-field

elevation pattern was calculated for the finite array shown in Figure 2.3 through pattern

multiplication. The far-field for a single, horizontal dipole above an infinite ground-plane

with the current distributions computed in SPLAT were calculated using the following

equation from [7] for the element factor:

E =

(
jη

kI0le− jβr

4πr

) √
1 − sin2(θ) sin2(φ)

[
2 j sin βh cos θ

]
(3.36)
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with h being the height above the ground plane. Equation 3.36 was then multiplied by the

space factor calculated by numerically integrating the current distribution on the reference

dipole found from SPLAT along the length of the dipole with the propagation term:

∫ l/2

−l/2
I
(
z′
)

e− jβz′ cos θdz′ (3.37)

Finally, the array factor for the 28×2 array comprising the center two columns of the feed

shown in Figure 2.3 was calculated using the following array factor equation:

AF =

N∑
n=1

 M∑
m=1

(I1nIm1) e j(m−1)(βdx sin θ cos φ+βx)

 e j(m−1)(βdx sin θ cos φ+βx) (3.38)

Multiplying Equations 3.36, 3.37, and 3.38 yields the final pattern for the finite array

using the currents calculated using SPLAT. Doing these pattern multiplication steps outside

of SPLAT was necessary to generate the elevation pattern, since the elevation pattern for

an infinite array would simply be a delta function in the direction normal to the array.

For the cases where the current distribution was not identical between the two

columns, the far-field for the two reference dipoles was first calculated, then a single linear

array factor (28×1 array factor) was applied. This was done by applying Equation 3.36 and

Equation 3.37 separately for each reference dipole then summing the two products to get

the total far-field. The resulting azimuthal and elevation patterns are shown in Section 4.4.2.

All patterns are normalized to the peak value of the main-beam.
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IV. Results and Analysis

4.1 Array Element Spacing - Parametric Study

The impedance curves calculated for the collinear array configurations specified in

Table 3.1 are presented and analyzed in this section. The chart titles indicate for which

column in the array the impedances were calculated. Column 1 is always the column lying

in the −x portion of the array, while Column 2 is always the column in the +x portion

of the array as shown in Figure 3.4a. For all collinear array configurations tested in this

parametric study, the impedance values from Column 1 were identical to the impedance

values from Column 2. Therefore, only the results for Column 1 are shown in this section.

For convenience, Table 3.1 has been repeated here:

Table 4.1: Parametric Study table

Config. No. Element Orientation Dz Dx Ground Plane Dist. Changing Spacing1 Direction of Change2

Config. 1 Vertical 9.10 cm - 14.00 cm 10.00 cm No Ground Plane Tip-to-Tip Infinite

Config. 2 Vertical 9.10 cm - 14.00 cm 10.00 cm 4.50 cm Tip-to-Tip Infinite

Config. 3 Vertical 10.00 cm 1.25 cm - 25.00 cm No Ground Plane Side-by-Side Finite

Config. 4 Vertical 10.00 cm 1.25 cm - 25.00 cm 4.50 cm Side-by-Side Finite

Config. 5 Vertical 10.00 cm 10.00 cm 1.25 cm - 9.00 cm Ground-Plane Dist. –

Config. 6 Horizontal 1.10 cm - 9.00 cm 10.00 cm 4.50 cm Side-by-Side Infinite

Config. 7 Horizontal 10.00 cm 9.10 cm - 18.75 cm 4.50 cm Tip-to-Tip Finite

Config. 8 Horizontal 10.00 cm 10.00 cm 1.25 cm - 9.00 cm Ground Plane Dist. –

*Fixed parameters: dipole lengths = 9.0 cm, dipole radii = 0.5 cm, εr=1, µr=1

1: Refers to the type of spacing layout between dipole elements that is changing
2: Indicates whether the changing spacing is occurring in the infinite or finite array dimension

4.1.1 Vertical Elements of the Two-Column Collinear Array and Ground Plane

Distance.

Figure 4.1 shows the results for the terminal impedances calculated for the first four

configurations from Table 4.1:
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Figure 4.1: (a) Terminal impedances for Configuration 1 (b) Terminal impedances

for Configuration 2 (c) Terminal impedances for Configuration 3 (d) Terminal

impedances for Configuration 4

As shown in Figure 4.1a where the ground-plane was excluded, the progressively

smaller tip-to-tip inter-element spacings for vertical elements in the infinite array direction

causes the impedance curves to tighten considerably. The direction of change in the
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impedance curves is towards the lower right-hand quadrant of the Smith Chart. This

indicates that the impedance values are becoming more capacitive (imaginary component

less than zero). The Dz spacing of 9.10 cm, which corresponds to a gap spacing of only 1

mm between adjacent dipoles in a vertical column, produces the largest terminal impedance

values (in magnitude), and is the tightest curve for the array without a ground-plane.

For this simple two-column collinear array of vertically oriented dipoles, the change

in the terminal impedance curves with the spacing Dz as shown in Figure 4.1a, can be

explained using a 2-port network model for the two columns and Equation 4.1. This

equation describes the mutual impedance Zq,′q between a column array q and an external

element q′, which is the reference dipole in the adjacent infinite column [5] i.e:

Zq,′q =
βZ
4Dz

∞∑
n=−∞

e− jβ(q′−q)rz r2
ρ P(q)

z Pq′t
z H(2)

0 (βrρ|ρ
′
− ρ|) (4.1)

In Equation 4.1, rz and rρ are distance variables defined by rz = sz + n λ
Dz

and rρ =
√

1 − r2
z ,

where sz is the ẑ component of the unit vector along the direction of excitation and the

index n indicates the n-th element in the array. The q′ − q term in the complex exponential

factor is the difference between the z-coordinates of the terminals of the reference dipoles

between the two columns. Therefore, for the collinear array the complex exponential term

disappears. The cylindrical coordinate vectors ρ and ρ′ are the vectors traced from the

origin to the reference element of the q and q′ columns respectively. The impedance Z is

equal to
√
µ/ε. The functions P(q)

z and Pq′t
z are the pattern factors for each column given by:

P(q)
z =

1
I(q)

∫ l

−l
I(q)(z′′)e jβz′′rzdz′′ (4.2)

where the coordinate variable z′′ exists along the length of the reference dipole for which

the pattern is calculated. I(q) is the current distribution on the element q. The superscript t
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indicates that the pattern factor of the reference element in the q′ column is calculated by

integrating the current distribution on the element when it is transmitting from its terminals.

As seen from the coefficient term outside the summation in Equation 4.1, the mutual

impedance increases as the spacing Dz is decreased. This is the case for Configuration

1 of the parametric study outlined in Table 4.1. By considering the reference dipoles of

Columns 1 and 2, the voltages and currents that exist on them, and by applying a two-port

network model to describe this system, the relation between the impedances, currents, and

voltages can be expressed as:

V
1

V2

 =

Z
1,1 Z1,2

Z2,1 Z2,2


I

1

I2

 , or:
V1 = Z1,1I1 + Z1,2I2

V2 = Z2,1I1 + Z2,2I2
(4.3)

V1 and V2 are the voltages impressed at the terminals of each respective reference dipole,

the Zm,n terms are the self and mutual-impedance values calculated by Equation 4.1, and

the I1 and I2 values are the currents at the terminals of the reference dipoles. The driving

point impedances for each terminal which are plotted on the Smith Chart are defined as

V1/I1 and V2/I2, i.e:

Z1D =
V1
I1

= Z1,1 + Z1,2
I1
I2

Z2D =
V2
I2

= Z1,1 + Z1,2
I1
I2

(4.4)

As the mutual impedances increase by applying smaller Dz spacings in Equation 4.1,

the driving point terminal impedances in Equation 4.4 should also increase in magnitude.

This is confirmed in the data shown in Figure 4.1a. As the impedance curves move towards

the right-hand side of the Smith Chart, they take on the larger normalized reactance and

resistance values that are plotted in this region. Therefore, as the inter-element spacing

Dz is decreased between SPLAT simulations, the magnitude of the terminal impedances

shown in Figure 4.1a increase in accordance with Equation 4.1 and Equation 4.4.
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Additionally, the symmetry of the geometry and the symmetry of the coupling matrix

in the two-port network equation explains the identical terminal impedances seen at the

terminals of the reference dipoles in Columns 1 and 2.

The results for the parametric study on the horizontal spacing between the vertical

array elements in Configuration 3 can be explained using the same mutual impedance and

coupling matrix equations. In this case, the changing horizontal spacing Dx, which moves

the columns either farther or closer apart, affects the argument of the Hankel function inside

of the summation in Equation 4.1. As the two columns are brought closer together by

decreasing Dx, the argument of the Hankel function decreases. Since the amplitude of the

Hankel function decays as ∼ x−1/2, where x is the argument of the Hankel function, the

magnitude of each term of the summation in Equation 4.1 increases as the columns are

brought closer together. Therefore, again the driving point impedance curves increase in

magnitude as the column spacing is decreased as shown in Figure 4.1c.

Large normalized impedances are plotted on the region of the (impedance) Smith

Chart concentrated near the Z = ∞ point on the right-hand side of the outermost |Γ| = 1

circle. Therefore, the increasing magnitude of the terminal impedances caused by the

decreasing element spacing makes the impedance curves appear to cluster tightly together

in that region. Therefore, the denser dipole arrays produce tighter, and more capacitive

impedance curves when plotted on the Smith Chart.

A mutual impedance equation similar to Equation 4.1 that describes the coupling

between array elements oriented in the horizontal direction is derived in Chapter 3, Section

3.4 of [5]. A similar explanation as the one provided above could be made for the results

from the parametric study on the horizontal element arrays using this equation. However,

the principle is the same in that the closer spacing produces tighter curves of higher

impedance values. Therefore, this type of analysis will not be repeated. Instead the results

for the remainder of the parametric study will be addressed qualitatively, since the other
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major reason for conducting the study was to find an optimal array geometry for wide-band

matching.

4.1.1.1 Vertical Dipole Array Ground Plane Distance Results.

As seen by comparing Figure 4.1a and Figure 4.1b the addition of a ground-plane

reduces the size of the impedance curves and causes the terminal impedances to become

more capacitive and larger in magnitude overall. The transformation of the impedance

curves after including the ground plane is more pronounced for the array configurations

with greater Dz spacing. The effect that the ground plane has on the terminal impedances

can be explained by modeling the ground plane using Image Theory as was discussed

in Section 3.2.4. Then, the mutual impedance relation given in Equation 4.1 can be

extended to the two image columns. The negative voltages and negative currents of the

image columns can be incorporated into Equation 4.3 to form a system of four equations

describing the four terminal voltages, terminal currents, and mutual impedances between

the reference dipoles of each column.

The mutual impedance equation can be used to calculate the Z1,1, Z1,2, Z1,3, Z1,4

etc. impedances to produce a 4x4 coupling matrix that takes into account the two real

columns and the two image columns. This is how SPLAT solves for the array currents

in the method-of-moments routine, except that the coupling matrix is 12x12 because each

reference dipole’s current is modeled by three modes or basis functions.

As shown in Figure 4.1b and Figure 4.1d, with the ground-plane present the trend of

tighter impedance curves with smaller Dz spacing no longer strictly holds true. Although

including the ground plane helps produce tighter impedance curves overall, within the

family of curves shown in Figure 4.1b, the curves for a Dz spacing of 11.00 cm and 10.00

cm actually produce tighter curves than the spacing at 9.10 cm.
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The real and imaginary components of the terminal impedances were investigated in

more detail to try and better examine the effect of including the ground-plane. Figure 4.2

plots the resistance and reactance for the arrays of Configurations 1 and 2 separately.
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Figure 4.2: (a) Imaginary component of terminal impedances for Configuration 1.

(b) Imaginary component of terminal impedances for Configuration 2. (c) Real

component of terminal impedances for Configuration 1. (d) Real component of

terminal impedances for Configuration 2.
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With the included ground-plane, the impedances for the vertical elements of the

collinear array become completely capacitive across the entire 0.3 GHz to 3.0 GHz

frequency range. For the impedances plotted for Configuration 1 in 4.1a, the reactance

across the differing geometries stay fairly constant except for in the window between 1.8

GHz to 2.3 GHz as shown in Figure 4.2a. In this window, changing the array geometry

causes the reactance to vary greatly from configuration to configuration. When the ground-

plane is added, the range of where this phenomenon occurs is extended to around 1.3

GHz to 2.5 GHz as shown in Figure 4.2b. However, the magnitude of the change

is reduced. After about 1 GHz, the ground-plane helps keep the terminal impedances

relatively constant across the 0.3 GHz to 3.0 GHz frequency range.

This leveling off of the terminal reactances is even more pronounced for the side-

by-side spacing changes of Configurations 3 and 4. The normalized reactances for these

configurations are shown in Figure 4.3:
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Figure 4.3: (a) Normalized reactances for Configuration 3. (b) Normalized reactances

for Configuration 4.

These reactance plots help explain the tightly clustered curves for the small values

of Dx in Figure 4.1c and Figure 4.1d. The curve for Dx = 1.25cm has the most negative

reactance for the majority of the frequency range. As mentioned in Section 3.3, these tighter
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curves are the most advantageous for performing wideband matching. Unfortunately, these

tighter Dx spacings cannot be realized with the collinear crossed dipole array without the

vertical dipole elements touching.

The effect of changing the ground-plane distance itself is shown in Figure 4.4. The

tightest impedance curves occur when the ground-plane distance is close to a quarter-

wavelength at the resonant frequency of the individual dipole elements. For this reason,

the ground-plane distances of 4.5 cm and 5.0 cm were chosen throughout the parametric

study.
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Figure 4.4: (a) Terminal impedances for Configuration 5 (Ground-Plane Distance

varying from 1.25 cm to 4.50 cm) (b) Terminal impedances for Configuration 5

(Ground Plane Distance varying from 5.00 cm to 9.00 cm)

The results presented so far conclude the parametric study on the vertically oriented

dipole elements for the two-column collinear array. From these results, it was determined

that a Dz spacing of 10.00 cm, a Dx spacing of 9.10 cm (about as close as possible without

horizontal elements touching), and a ground plane distance of 5.0 cm would provide the

best set of terminal impedance curves for wide-band matching for the vertical elements in

the array.
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4.1.2 Horizontal Elements of the Two-Column Collinear Array.

Figure 4.5 shows the impedance curves for the parametric study conducted on the

horizontal dipole elements in the two-column collinear array as specified by Configurations

6 and 7 in Table 4.1:
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Figure 4.5: (a) Terminal impedances for Configuration 6 (b) Terminal impedances for

Configuration 7

As seen in Figure 4.5a, the array spacing drastically affects the impedance of the

horizontal dipoles. Intuitively, this makes sense as there is much more surface area

presented between the dipoles within a single infinite column of horizontal elements. As the

inter-element spacing Dz is reduced, the side-by-side configuration produces much stronger

mutual coupling between the array elements versus the tip-to-tip vertical elements.

Unfortunately, the addition of the ground-plane does not enhance this effect but instead

broadens the impedance curves for the horizontal dipoles once the ground-plane is added.

Nevertheless, the curve for Dx = 9.10 cm is comparable to the impedance curve for the

vertical dipole spacing Dz = 10.00 cm. Therefore, similar impedance values result for

the vertical dipoles as the horizontal dipoles in the collinear array. More importantly, the

Dz = 10.00 cm and Dx = 9.10 cm dimensions that were selected to produce the optimal
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impedance curves for the vertical dipoles also produce the optimal impedance curves for

the horizontal dipoles. Since the horizontal and vertical arrays ultimately must share the

same array dimensions as one unified crossed-dipole array, this was a fortunate result.

Finally, Figure 4.6 shows the result of varying the ground-plane distance as indicated

by Configuration 8 from Table 4.1:
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Figure 4.6: (a) Terminal impedances for Configuration 8 (b) Terminal impedances for

Configuration 8

Again, the best results were obtained by letting the ground-plane distance be close to

a quarter-wavelength away from the array at the center frequency of 1.5 GHz.

4.2 Stepped-Transmission Line Wide-band Matching

With the final spacing parameters determined as Dz = 10.00 cm, Dx = 9.10 cm,

and with the ground-plane placed 5.00 cm behind the array, the stepped-transmission line

wide-band matching technique as described in Section 3.3 was applied at the terminals.

The results of applying the matching network are shown in the figures below by plotting

the final transformed terminal impedances and the resultant VSWR of the antenna.
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4.2.1 Impedance Matching Results: Two-Column Collinear Array.

The results for a two-stage matching network applied to the terminals of the vertical

dipole array is shown in Figure 4.7:
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Figure 4.7: (a) Driving point impedances for optimal two-column collinear vertical

dipole array. (b) VSWR for optimal two-column collinear vertical dipole array before

matching. (c) Driving point impedances for two-column collinear vertical dipole array

after wide-band matching. (d) VSWR for two-column collinear vertical dipole array

after wide-band matching.
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After following the procedures outlined in Section 3.3.2, the transmission line length

GUI tool was used to fine tune the matching section lengths in order to bring more of the

impedance curve from 0.3 GHz to 3.0 GHz below a VSWR of 2. It was found that using

a section of transmission line slightly less than a quarter-wavelength long for the second

matching section brought more of the frequency range below a VSWR of 2. A matching

section of L1 = 1.44 cm with a characteristic impedance of Z01 = 200Ω for the first segment

was used. For the second matching section, L2 = 4.09 cm with the characteristic impedance

of the section Z02 = 70Ω. Using this matching network, an impedance bandwidth of 0.83

GHz to 2.97 GHz (Fractional Bandwidth (FBW) = 3.6:1) was achieved for the vertical

dipole array using the stepped-transmission line technique.

After comparing the single-stage versus two-stage matching solutions for the

horizontal dipole array, it was seen that the single-stage stepped transmission line solution

produced a wider impedance bandwidth. The results for a single-stage matching network

for the horizontal dipole array is shown in Figure 4.8. For this matching network a

transmission line section of L1 = 3.32 cm with characteristic impedance Z01 = 100Ω was

used. The result is an impedance bandwidth of 0.94 GHz to 2.47 GHz (FBW = 2.6:1).

Although this range still includes all of the L-band, which was objective of this

study, the bandwidth is not quite as wide as the bandwidth for the vertical dipoles. When

comparing Figure 4.7a against Figure 4.8a, it can be seen that the original impedance curve

for the vertical dipoles was tighter to begin with versus the curve for the horizontal dipoles.

Therefore, there was less spreading of the impedances as the curves were rotated around

the Smith Chart. This made it easier to bring more of the frequency range for the vertical

dipoles into the VSWR of 2 circle.

Since the vertical and horizontal dipoles must operate together 90◦ out-of-phase to

achieve circular polarization in the crossed-dipole array, the bandwidth of the entire array

is limited to the smaller of the two ranges (0.94 GHz to 2.47 GHz).
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Figure 4.8: (a) Driving point impedances for optimal two-column collinear horizontal

dipole array. (b) VSWR for optimal two-column collinear horizontal dipole array

before matching. (c) Driving point impedances for two-column collinear horizontal

dipole array after single-stage wide-band matching. (d) VSWR for two-column

collinear horizontal dipole array after wide-band single-stage matching.
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4.2.2 Impedance Matching Results: Two-Column Staggered Array.

To see if the denser, staggered dipole arrangement depicted in Figure 3.4b could

perform any better based on its closer array element spacing, a SPLAT simulation was

run for one possible configuration for a two-column staggered array.
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Figure 4.9: (a) Driving point impedances for two-column staggered vertical dipole

array (b) VSWR for two-column staggered vertical dipole array before matching (c)

Driving point impedances for two-column staggered vertical dipole array after two-

stage wide-band matching (d) VSWR for two-column staggered vertical dipole array

after two-stage wide-band matching

68



The results for a two-stage matching network for the staggered vertical dipole array is

shown in Figure 4.9. The same Dz = 9.10 cm spacing was used for elements within each

column, but the Dz1,2 offset of 4.55 cm between the two columns allowed the Dx spacing to

be made closer at 6.75 cm without the horizontal dipoles touching. The resulting impedance

curve for this arrangement is shown in Figure 4.9a. Although the curve is fairly tight, the

high-frequency tail starts to widen after around 2 GHz. A two-stage stepped-transmission

line matching network was used to perform the impedance matching. The result of using

a first section of 1.4 cm, 200Ω line and a 4.5 cm, 70Ω line second section produced an

impedance bandwidth of 0.72 GHz to 2.45 GHz (FBW = 3.4:1).

The results for a two-stage matching network for the horizontal dipole array is shown

in Figure 4.10. As shown in Figure 4.10a, the original impedance curve for the staggered

horizontal arrays is broader than the curve for the collinear horizontal array. A two-stage

matching network comprised of a 0.6 cm, 200Ω line first stage and a 4.0 cm, 70Ω line

second stage produced an impedance bandwidth of 1.00 GHz to 2.55 GHz (FBW: 2.55:1).

Therefore, when comparing the collinear array to the staggered array, the resulting

impedance bandwidths are similar. Of course, only one staggered configuration was tested.

A similar parametric study as the one conducted for the collinear array could be conducted

to find a better starting configuration for the staggered array before wideband matching.
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Figure 4.10: (a) Driving point impedances for two-column staggered horizontal dipole

array. (b) VSWR for two-column staggered horizontal dipole array before matching.

(c) Driving point impedances for two-column staggered horizontal dipole array after

two-stage wide-band matching. (d) VSWR for two-column staggered horizontal

dipole array after two-stage wide-band matching.
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The results of the impedance matching for the collinear and staggered dipole arrays

are summarized in Table 4.2:

Table 4.2: Impedance matching results

Array Type Dipole Orientation Matching Network Type Z01,L1 Z02,L2 Impedance Bandwidth Frac. BW

Collinear Vertical Two-Stage 200Ω, 1.44 cm 70Ω, 4.09 cm 0.83 GHz - 2.97 GHz 3.6:1

Collinear Horizontal Single-Stage – 100Ω, 3.32 cm 0.94 GHz - 2.47 GHz 2.6:1

Staggered Vertical Two-Stage 200Ω, 1.40 cm 70Ω, 4.50 cm 0.72 GHz - 2.45 GHz 3.4:1

Staggered Horizontal Two-Stage 200Ω, 0.60 cm 70Ω, 4.00 cm 1.00 GHz - 2.55 GHz 2.6:1

The impedance bandwidth for the staggered dipole array would again be limited to the

inner most bounds of the impedance bandwidths calculated for each element orientation.

Therefore, the staggered array’s total circular polarization bandwidth would be from 1.00

GHz to 2.45 GHz. This range still covers the L-band, and the frequencies spanned in this

range are close to the frequencies covered by the collinear array.

4.3 Current Distributions on the Array Dipoles

The impedances calculated for the crossed-dipole arrays are related to the values of

the terminal currents by Ohm’s Law. Since the terminal voltages are always set to a

constant normalized value of 1V, the small variations in the terminal impedances shown

by the tight impedance curves on the Smith Chart indicate that the terminal currents are

also varying minimally with frequency. However, the impedance is only calculated at the

terminals of the dipoles using the coefficients of the current basis functions as described

in Section 3.2.5.1. Therefore, the Smith Charts do not provide any information about the

current distribution over the entire reference dipole.

By the principle of pattern multiplication, the far-field pattern of the array is calculated

in part by the pattern factor of Equation 3.12. This term takes into account the distribution

of the currents on the reference dipole of each infinite column array. Therefore, although

the impedance bandwidths calculated in Section 4.2.2 describe the range of frequencies
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where minimal power is lost due to impedance mismatch, this bandwidth figure does not

guarantee that the array will produce a desirable radiation pattern at those frequencies.

To adopt the terminology used in [20], which describes the duality of an antenna as both a

circuit device and a space device, the impedance bandwidth analysis thus far has considered

the array from a circuit device perspective. Circuit parameters such as the mismatch loss,

reflection coefficient, and VSWR have been considered in the impedance bandwidth study.

However, the space parameters such as the far-field pattern and directivity must also

be considered, especially because the array is designed as a feed for such a unique,

sparse-aperture, cruciform reflector. The transition region between the circuit quantities

and the space quantities is the current distribution on the array [20]. Therefore, the

current distributions on the reference dipoles were reconstructed using the sinusoidal basis

functions and the weighting coefficients as described in Section 3.2.5.1. The figures in this

section show what the current distribution looks like on the array for both the L-band set

of frequencies, and at the limits of the impedance bandwidth calculated in the previous

section. The far-field patterns calculated from these current distributions are then shown in

Section 4.4.

4.3.1 Current Distribution on Two-Column Collinear Array.

The current distribution on the reference dipoles in the two-column collinear array at

the center frequency of the L-band at 1.5 GHz is shown in Figure 4.11. As indicated by

the data point labels on the plot, the complex weighting coefficients have now been applied

to the unweighted normalized sinusoidal basis functions. The linear combination of these

basis functions reconstructs the current. The distance coordinates given in the plots are the

local coordinates of each reference dipole and not the global coordinates that are relative to

the center of the array. For the horizontal dipoles, the current distribution was not identical

for both columns, but was instead symmetric about the center of the array. The current
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distribution for both columns of the vertical arrays were identical, so only the distribution

on Column 1 is shown.
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Figure 4.11: (a) Current distribution along reference dipole of Column 1 for

horizontal collinear array at 1.5 GHz. (b) Current distribution along reference dipole

of Column 2 for horizontal collinear array at 1.5 GHz. (c) Current distribution along

reference dipole of Columns 1 and 2 for vertical collinear array at 1.5 GHz.
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At the resonant frequency of the individual dipoles, the current maximum occurs at

the center of the dipoles for the vertical infinite array. For the two horizontal columns, the

voltages at the terminals of the neighboring horizontal element pulls the current maximum

towards this neighboring element. The plots in Figure 4.11 only show the magnitude of the

current distribution. The phase information for the current along the dipole can be seen by

plotting the real and imaginary components separately.

The magnitude of the current distribution on the reference dipoles of the two-column

collinear array for five evenly spaced frequencies in the L-band (1.0 GHz, 1.25 GHz, 1.50

GHz, 1.75 GHz and 2.00 GHz) are shown in Figure 4.12. The location of the current

maximum for the horizontal dipoles moves increasingly towards the other horizontal

element as the frequency increases. Additionally, by 2 GHz, a second peak in the current

distribution starts to appear for both dipole orientations. The presence of these second

current maxima on the dipoles is responsible for the side-lobes in the far-field pattern as

shown in Figure 4.15a and Figure 4.18a.

The magnitude of the current of the dipoles at the terminals is also indicated in

Figure 4.12. As was discussed, these were the current values that were used in calculating

the terminal impedances. The minimum and maximum values of the terminal currents

are shown. The variation in the value of the complex terminal currents is responsible for

the shape of the terminal impedance curves plotted on the Smith Charts. The superimposed

current distributions show for which frequencies this variation is minimal. Furthermore, the

overall similarity of the entire current distribution from frequency to frequency translates

into a uniformity in the far-field patterns at these different frequencies as shown in the plots

in Section 4.4.
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Figure 4.12: (a) Current distribution along reference dipole of Column 1 for

horizontal collinear array from 1-2 GHz. (b) Current distribution along reference

dipole of Column 2 for horizontal collinear array from 1-2 GHz. (c) Current

distribution along reference dipole of Columns 1 and 2 for vertical collinear array

from 1-2 GHz.
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The same procedure was repeated to find the current distribution for the limits of the

impedance bandwidth for the horizontal and vertical collinear arrays listed in Table 4.2:
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Figure 4.13: (a) Current distribution along reference dipole of column 1 for horizontal

collinear array (b) Current distribution along reference dipole of column 2 for

horizontal collinear array (c) Current distribution along reference dipole of columns

1 and 2 for vertical collinear array
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As shown in Figure 4.13, by 2.97 GHz for the vertical dipoles, the second current

maximum causes the main beam in Figure 4.15c to point off-axis with considerable side-

lobes also present in the pattern.

4.3.2 Current Distribution on Two-Column Staggered Array.

Figure 4.14 plots the L-band current distributions for the two-column staggered array

configuration specified in Table 3.2. The distributions are more uniform from frequency

to frequency for the staggered arrays. The current distribution on the horizontal dipoles in

the staggered column array are also identical between Columns 1 and 2. Furthermore, no

additional current maxima are present at 2.0 GHz. Therefore, especially for the vertical

dipoles, the denser staggered array helps keep the entire current distribution more uniform

across the frequency range than the collinear array.
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Figure 4.14: (a) Current distribution along reference dipole for vertical staggered

array (b) Current distribution along reference dipole for horizontal staggered array

This consistency of the current distribution across the L-band frequency range results

in the uniform far-field amplitude patterns for the staggered array as shown in Figure 4.20

and Figure 4.22.
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4.4 Tightly Packed Dipole Array Far-field Patterns

4.4.1 Far-Field Amplitude Plot: Two-Column Collinear Array.

The far-field amplitude patterns for the two-column collinear array with dimensions

Dz = 9.10 cm, Dx = 10.00 cm, and ground-plane distance = 5.0 cm are shown in this

section. The far-field patterns are calculated for the same frequencies for which the

current distributions in Section 4.3 were plotted. As discussed in Section 3.4, the far-

field plots computed directly from SPLAT in bistatic mode are limited to the azimuthal

pattern with the elevation angle θ fixed at 90◦ based on the definition of the excitation

voltages. The amplitude patterns for the |Eθ| component and |Eφ| component of the E-field

are plotted separately. The elevation pattern with the azimuthal angle φ fixed at 90◦ was

computed using the array factor pattern multiplication method in MATLAB and the current

distributions calculated in SPLAT as described in Section 3.4.

The |Eφ| patterns were computed by using the horizontal dipole array current

distributions shown in the previous section for the input variable I in Equation 3.12.

Similarly, the |Eθ| patterns are produced by the currents on the vertical dipole elements

in the crossed-dipole array. Together, these two plots for each field component represent

the radiation pattern from a circularly polarized array. By the reciprocity theorem, these

amplitude patterns are equivalent to the receive pattern for the antenna feed [7]. Each

polar plot of the pattern is accompanied by the equivalent representation in rectangular

coordinates. All patterns are normalized to the peak value of the main beam.
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Figure 4.15: (a) Far-field plot of |Eθ| azimuthal amplitude pattern for two-column

collinear crossed-dipole array (1-2 GHz). (b) Rectangular plot of |Eθ| far-field (1-2

GHz). (c) Far-field plot of |Eθ| azimuthal amplitude pattern for two-column collinear

crossed-dipole array (0.83-2.97 GHz). (d) Rectangular plot of |Eθ| far-field (0.83-2.97

GHz).
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Figure 4.16: (a) |Eθ| Far-field amplitude elevation pattern for collinear crossed-dipole

array (b) |Eθ| far-field amplitude elevation pattern for collinear crossed-dipole array

rectangular plot array

The amplitude patterns for the vertical component of the crossed-dipole array in

Figure 4.15 show the effect that the changing current distribution has on the shape of the

radiation pattern and the size of the side-lobes. For the pattern at 2.0 GHz, the main beams

point off-axis from the surface normal of the array towards the φ = 50◦ and φ = 130◦

directions. The amplitude of the Eθ component of the field in the normal direction of

φ = 90◦ is 4 dB lower than the value of the field for these two main beams at 2.0 GHz.

However, aside from the pattern at 2.0 GHz, the patterns for Eθ for the other frequencies

are otherwise fairly consistent in terms of shape and magnitude in the direction towards the

reflector.

The pattern at 2.97 GHz, which is the upper limit of the impedance bandwidth

calculated for the vertical dipole array, however, shows the effect of the multiple current

maxima in the current distribution shown in Figure 4.15c. In the far-field, the main beam
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is again steered off axis from the surface normal of the array and multiple side-lobes occur.

The amplitude of the field in the direction towards the reflector at φ = 90◦ at 2.97 GHz is 24

dB below the value of the field in this direction at 1.5 GHz. This shows that the performance

of the antenna in terms of the space parameters at the limits of the calculated impedance

bandwidth may not be adequate. Based the gain requirement for the far-field pattern, the

pattern bandwidth may be more restrictive than the impedance bandwidth calculated for

the feed. Nevertheless, Figure 4.15 shows that within the L-band at least, the Eθ amplitude

pattern is consistent in magnitude with the main beam pointing in the φ = 90◦ direction

towards the reflector.

Figure 4.16 shows that the 28-by-2 element array produces a narrow main-beam for

the Eθ elevation pattern. This is ideal in efficiently illuminating the narrow horizontal arm

of the reflector shown Figure 4.17 [4].

Figure 4.17: Cruciform reflector geometry side view showing the 6.18 degree fill-angle

for the reflector arms
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The magnitude of the closest side-lobes are about -12 dB below that of the main beam.

Table 4.3 lists the 3 dB beamwidth and the magnitude of the elevation pattern at the 6.18◦

point illustrated in Figure 4.17. Ideally, at this angle we would want the magnitude of the

field to fall off sharply to minimize the spillover. A -10 dB drop-off from the peak value

of the main-beam was used originally as a design goal for the feed in [3]. As shown in

Table 4.3, the collinear array meets this design criteria for the vertical elements and comes

close to meeting it for the horizontal elements.

Table 4.3: Collinear and Staggered Array Beamwidth Calculations

at 1.5 GHz Collinear Vert. Elem. Collinear Horiz. Elem. Staggered Vert. Elem. Staggered Horiz. Elem.

3 dB Beamwidth 3.67◦ 4.01◦ 7.91◦ 5.04◦

Magnitude at 6.18◦ -12.23 dB -9.36 dB -2.08 dB -5.08 dB

10 dB Beamwidth 5.73◦ 6.98◦ 12.94◦ 10.42◦

Figure 4.18 shows the far-field amplitude pattern for the Eφ component of the field.

The azimuthal pattern exhibits a similar uniform pattern which starts to degrade at 2.0

GHz. The elevation pattern however shows high directivity across the L-band range with

again about a -12 dB difference between the magnitude of the main beam and the nearest

side-lobe.
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Figure 4.18: (a) Far-field plot of |Eφ| azimuthal amplitude pattern for two-column

collinear crossed-dipole array (1-2 GHz). (b) Rectangular plot of |Eφ| far-field (1-2

GHz). (c) Far-field plot of |Eφ| azimuthal amplitude pattern for two-column collinear

crossed-dipole array (0.90-2.26 GHz). (d) Rectangular plot of |Eφ| far-field (0.90-2.26

GHz).
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Figure 4.19: (a) |Eφ| far-field amplitude elevation pattern for collinear crossed-dipole

array (b) |Eφ| far-field amplitude elevation pattern for collinear crossed-dipole array

rectangular plot

4.4.2 Far-Field Amplitude Plot: Two-Column Staggered Array.

The far-field patterns were also calculated for the staggered-array configuration. As

seen from Figure 4.14a and Figure 4.14b, the current distributions for the staggered array

dipoles remained very consistent between the L-band frequencies. This translates into the

uniform far-field patterns for the L-band frequencies shown in Figure 4.20 and Figure 4.22.

The amplitude patterns for the staggered array also maintain this uniformity up to 2.00

GHz unlike the patterns for the collinear array. Thus, if the design requirements favor the

consistency of the pattern over the width of the impedance bandwidth, then the staggered

arrangement would be be preferable. However, the trade-off in the elevation pattern is

that the denser array configuration does not exhibit as narrow of a main-beam as seen in

Figure 4.21 and in Table 4.3. With only a -2.08 dB and -5.08 dB drop-off at the 6.18◦ point,

there would be significant spillover past the reflector arms from the staggered dipole array.
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It should be noted that these far-field patterns for all of the configurations were

obtained by assuming an identical current distribution on all elements relative to the

reference dipoles in the array. In actuality, the currents on the elements in the finite

108-element feed in Figure 2.3 would exhibit some variation. The elements towards the

end of the arrays would exhibit the same kind of perturbation seen in Figure 4.12a and

Figure 4.12b, which demonstrate what happens to the current distribution on the edge

elements for a finite array.

Furthermore, a separate study has been proposed for this feed design which involves

tailoring the shape of the far-field pattern from the array using the technique of pattern

synthesis [21]. Therefore, a study dedicated to optimizing the pattern for the cruciform

reflector could be performed to produce far-field patterns that are more suitable than the

results shown in this section. The main focus of this study was in the optimization of the

array geometry to improve the impedance bandwidth of the crossed-dipole array. The far-

field plots were calculated to provide some baseline information about what the pattern

would look like based on these array geometries and resulting current distributions.
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Figure 4.20: (a) Far-field plot of |Eθ| azimuthal amplitude pattern for two-column

staggered crossed-dipole array (1-2 GHz). (b) Rectangular plot of |Eθ| far-field (1-2

GHz). (c) Far-field plot of |Eθ| azimuthal amplitude pattern for two-column staggered

crossed-dipole array (0.72-2.45 GHz). (d) Rectangular plot of |Eθ| far-field (0.72-2.45

GHz).
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Figure 4.21: (a) |Eθ| Far-field amplitude elevation pattern for staggered crossed-dipole

array (b) |Eθ| Far-field amplitude elevation pattern for staggered crossed-dipole array

rectangular plot

87



0

30

60

90

120

150

180

210

240

270

300

330

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

0 dB

|E |: Far-Field Amplitude Azimuthal Pattern (dB)

Two-Column Staggered Horizontal Dipole Array:  = 90° ,  = 0°- 180°

f = 1.0 GHz

f = 1.25 GHz

f = 1.50 GHz

f = 1.75 GHz

f = 2.0 GHz

(a)

0° 45° 90° 135° 180°
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
 o

f E
-f

ie
ld

 (
dB

)

|E |: Far-Field Amplitude Azimuthal Pattern (dB)

Two-Column Collinear Horizontal Dipole Array:  = 90°,  = 0°- 180°

f = 1.0 GHz
f = 1.25 GHz
f = 1.50 GHz
f = 1.75 GHz
f = 2.0 GHz

(b)

0

30

60

90

120

150

180

210

240

270

300

330

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

0 dB

|E |: Far-Field Amplitude Azimuthal Pattern (dB)

Two-Column Staggered Horizontal Dipole Array:  = 90° ,  = 0°- 180°

f = 1.00 GHz

f = 1.50 GHz

f = 2.55 GHz

(c)

0° 45° 90° 135° 180°
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

|E
| (

dB
)

|E |: Far-Field Amplitude Azimuthal Pattern (dB)

Two-Column Staggered Horizontal Dipole Array:  = 90°,  = 0°- 180°

f = 1.00 GHz
f = 1.50 GHz
f = 2.55 GHz

(d)

Figure 4.22: (a) Far-field plot of |Eφ| azimuthal amplitude pattern for two-column

staggered crossed-dipole array (1-2 GHz). (b) Rectangular plot of |Eφ| far-field (1-2

GHz). (c) Far-field plot of |Eφ| azimuthal amplitude pattern for two-column staggered

crossed-dipole array (1.00-2.55 GHz) (d) Rectangular plot of |Eφ| far-field (1.00-2.55

GHz).
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Figure 4.23: (b) |Eφ| Far-field amplitude elevation pattern for staggered crossed-dipole

array (b) |Eφ| Far-field amplitude elevation pattern for staggered crossed-dipole array

rectangular plot
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V. Conclusion

The impedance bandwidth of a tightly-packed crossed-dipole array antenna was

studied in this thesis. In particular, the effect of changing the inter-element spacing in

the array on the antenna’s bandwidth was investigated. The objective of the research was

to design an antenna with an impedance bandwidth large enough to cover the L-band range

of frequencies. This bandwidth was defined as the set of frequencies where the VSWR at

the terminals of the crossed-dipoles in the array is below 2.

This study was conducted to extend previous research that was performed on

designing a feed for a large, deployable, cruciform reflector which is intended to be

used on a communications satellite. Previous research on the feed focused on the pattern

characteristics of a feed design consisting of a sparser array of dipoles at a single frequency.

The study reported in this thesis tested the hypothesis that a denser array of periodically

spaced elements could produce a higher bandwidth by exploiting the mutual coupling

between elements.

The research was performed by conducting a parametric study using a computational

electro-magnetics code. Using this code, different array configurations with varying

element spacings were simulated. The results of this parametric study were used to simulate

a final array configuration. The impedance characteristics of this final design were then

used to design a stepped-transmission line wideband matching network for the array that

brought the VSWR of the elements below 2. An impedance bandwidth of 2.6:1 was

achieved for the crossed-dipole array which exceeded coverage of the L-band frequencies.

The beneficial effect of mutual coupling in minimizing the variation in terminal impedance

from frequency to frequency was seen to be stronger for denser array configurations.

Both a collinear arrangement of dipoles and a denser staggered arrangement were

tested. The current distribution and far-field plots calculated for these two different
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configurations showed that the denser staggered array produced a more uniform far-field

pattern across the L-band frequency range as well at the expense of a wider main-beam.

Future studies could be conducted that refine the antenna design produced in this

thesis by increasing the number of columns in the array. This could further increase the

coupling to improve the bandwidth and could also result in a more narrow far-field pattern.

Additionally, the effect of including a dielectric layer around the dipoles to further improve

the bandwidth could also be investigated. A separate study has been proposed as well which

would involve tailoring the current distribution on the array to produce a more desirable far-

field pattern using the technique of pattern synthesis.

Overall, this study has demonstrated the viability of using a tightly-packed crossed-

dipole array feed for the deployable, cruciform reflector antenna design. Using the design

principles and analysis techniques demonstrated in this thesis, a dipole array feed could be

designed in order to take advantage of the high gain provided by such a large reflector, and

thereby improve the performance of future U.S. Air Force communication satellites.
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Appendix: Full Results

A.1 SPLAT Files

The command file structure used in SPLAT is shown below [8]. (File extension = “.in”):

pattern_type {’bistatic’,’monostatic’,’frequency sweep’}

start value, end value, increment {Independent variable parameters}

theta_in, phi_in, phi_out, fGHZ

impedance_in_flag, impedance_write_flag, line_in_flag

[x_line,y_line]

[’Z_matrix_file #1’]

[’Z_matrix_file #2’]

[’Z_matrix_file #3’]

...

separation_criterion, rho, converge_pct, min_int

norm_type {’echowidth’,’regular’,’schneider’}

norm_flag

[norm_val] {read if norm_flag is set}

v_write_flag, cur_write_flag

inputs_only_flag, write_flag, plot3d, plotxz, plotyz

mag_field_out

’geometry file name’

’output file name’

partial_fields_flag, scan_impedance_flag, v_in_flag, cur_in_flag

[’partial fields file name’]

[’scan impedance input file name’, ’scan impedance output file name’]

[’voltage vector file name’]

[’current vector file name’]
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Based on the command file template, an example command file (“VLSA.in”) used in the

parametric study is provided below:

’frequency sweep’ ! pattern type ’bistatic’,’monostatic’,’frequency sweep’

0.20,3.00,0.01 ! start value, end value, increment

90,90,90.,7.7 ! theta in, phi in, phi out, fGHz

.false.,.false. ! impedance in flag, impedance write flag,

10.0,0.0,.01,80 ! sep. crit., rho, converge percent., min. interval

’schneider’ ! norm. type ’echowidth’,’regular’,’schneider’

.true. ! norm. flag

1.0 ! norm. value

.true.,.true. ! voltage write flag, current write flag

.false.,.true. ! inputs only flag, write flag

.false. ! magnetic field out flag

’VLSA2Col.geo’ ! geometry file name

’VLSA2Col.dat’ ! output file name

.false.,.false.,.true.,.false. ! partial fields., scan imp.., volt. in., curr. in.

.false.,.false. ! near fields flag, line source in flag

’VLSAvolt.vlt’ ! voltage vector file name

The geometry file structure used in SPLAT is shown below [8]. (File extension = “.geo”):

! Geometry Template File for SPLAT

!! Dz

! Interelement spacing within a column. Must be the same for all cols in array

!! ambient dielectric constant, ambient conductivity, ambient loss tangent

! 1.0, 0.0, 0.0
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!! NUM_SHELLS Section

! BEGIN NUM_SHELLS lines:

! shell radius, dielectric constant, conductivity, loss tangent

! ...

! shell radius, dielectric constant, conductivity, loss tangent

! END NUM_SHELLS lines

!! NUM_CELL Section number of cells?

! BEGIN NUM_CELL lines:

! NUM_NODES, NUM_SEGMENTS, NUM_MODES, NUM_ARRAYS

! BEGIN NUM_NODES lines:

! Node Label, x,y,z

! ...

! Node Label, x,y,z

! END NUM_Nodes lines

! BEGIN NUM_SEGMENTS lines:

! Segment label, Node 1, Node 2

! wire conductivity, wire radius, shell #

! ...

! Segment label, Node 1, Node 2

! wire conductivity, wire radius, shell #

! END NUM_SEGMENTS lines

! BEGIN NUM_MODES lines:

! segments, terminal, segment, ,segment

! ...

! segments, terminal, segment, ,segment

! END NUM_MODES lines

! BEGIN NUM_ARRAYS lines:

! # clones, Dx, xc, yc, zc, alpha

! ...

! # clones, Dx, xc, yc, zc, alpha

! END NUM_ARRAYS lines

! END NUM_CELL lines
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!! NUM_LOADS, NUM_CKT, NUM_RODS section

! BEGIN NUM_LOADS lines:

! [mode #, complex lumped load value, [,circuit flag]]

! ...

! [mode #, complex lumped load value, [,circuit flag]]

! END NUM_LOADS lines

! BEGIN NUM_CKT lines:

! [inductor, capacitor, center frequency]

! ...

! [inductor, capacitor, center frequency]

! END NUM_CKT lines

! BEGIN NUM_RODS lines:

! [mode #, complex permittivity of rod]

! ...

! [mode #, complex permittivity of rod]

! END NUM_RODS lines

Based on the geometry file template, an example geometry file (“VLSA2Col.geo”) used in

the parametric study is provided below:

10.00000 ! Dz: Interelement spacing within a column.

1.0 0.0 0.0 ! ambient dielec. const., ambient conduct., ambient loss tang.

0 ! NUM_SHELLS: Number of dielectric shells

1 ! NUM_CELL: Number of cells

5 4 3 1 ! Num. of Nodes, Num. of Segments, Num. of Modes, Num. of Arrays

10 0.000 0.000 -4.500 ! Node label, x, y, z

15 0.000 0.000 -2.250 ! Node label, x, y, z

20 0.000 0.000 0.000 ! Node label, x, y, z

25 0.000 0.000 2.250 ! Node label, x, y, z
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30 0.000 0.000 4.500 ! Node label, x, y, z

1 10 15 ! Segment label, Node 1, Node 2

.0000 0.5000 0 ! wire conductivity, wire radius, shell number

2 15 20 ! Segment label, Node 1, Node 2

.0000 0.5000 0 ! wire conductivity, wire radius, shell number

3 20 25 ! Segment label, Node 1, Node 2

.0000 0.5000 0 ! wire conductivity, wire radius, shell number

4 25 30 ! Segment label, Node 1, Node 2

.0000 0.5000 0 ! wire conductivity, wire radius, shell number

2 15 1 2 ! Number of segments, terminal node, start segment, end segment

2 20 2 3 ! Number of segments, terminal node, start segment, end segment

2 25 3 4 ! Number of segments, terminal node, start segment, end segment

2 10.0 0 0 0 0 ! Number of clones, Dx, x center, y center, z center, alpha

0 0 0 ! Number of loads, Number of circuits, Number of rods

The voltage vector files are simply a list of the complex voltages defined for the modes

spanning each reference dipole separated into their real and imaginary components and

theta and phi polarizations:

0.000,0.000,0.000,0.000 !Complex voltage theta pol., Complex voltage phi pol.

1.000,0.000,0.000,0.000 !Complex voltage theta pol., Complex voltage phi pol.

0.000,0.000,0.000,0.000 !Complex voltage theta pol., Complex voltage phi pol.

0.000,0.000,0.000,0.000 !Complex voltage theta pol., Complex voltage phi pol.

1.000,0.000,0.000,0.000 !Complex voltage theta pol., Complex voltage phi pol.

0.000,0.000,0.000,0.000 !Complex voltage theta pol., Complex voltage phi pol.
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Finally, an example output file from SPLAT is shown below which lists the value of the

E-field for the various output angles and the value of the current coefficients for the current

modes spanning the reference dipole. The order of the currents listed is the order in which

the modes are defined in SPLAT [8]:

SPLAT - Frequency Sweep

Phi_in = 90.000 Phi_out = 90.000 Theta_in = 90.000

FreqGHz RealField ImagField RealField ImagField

.2000 -.135204E-01 -.463950 0.00000 0.00000

.2100 -.165232E-01 -.513436 0.00000 0.00000

.2200 -.200171E-01 -.565661 0.00000 0.00000

.2300 -.240414E-01 -.620674 0.00000 0.00000

.2400 -.286717E-01 -.678494 0.00000 0.00000

.2500 -.339375E-01 -.739172 0.00000 0.00000

.2600 -.399367E-01 -.802732 0.00000 0.00000

.2700 -.467124E-01 -.869204 0.00000 0.00000

.2800 -.543390E-01 -.938638 0.00000 0.00000

.2900 -.628684E-01 -1.01104 0.00000 0.00000

.3000 -.724284E-01 -1.08646 0.00000 0.00000

...

2.900 -16.6157 14.4974 0.00000 0.00000

2.910 -16.6933 14.4625 0.00000 0.00000

2.920 -16.7734 14.4306 0.00000 0.00000

2.930 -16.8586 14.4052 0.00000 0.00000

2.940 -16.9445 14.3818 0.00000 0.00000

2.950 -17.0332 14.3656 0.00000 0.00000

2.960 -17.1323 14.3568 0.00000 0.00000
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2.970 -17.2352 14.3620 0.00000 0.00000

2.980 -17.3351 14.3624 0.00000 0.00000

2.990 -17.4325 14.3909 0.00000 0.00000

3.000 -17.6568 14.5520 0.00000 0.00000

Induced Voltage

j v_thetaj v_phij

1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

2 1.000000 1.3741843E-07 0.0000000E+00 0.0000000E+00

3 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

4 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

5 1.000000 -1.3741843E-07 0.0000000E+00 0.0000000E+00

6 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Currents

j cur_thetaj cur_phij

1 1.4192660E-03 -6.4815148E-03 0.0000000E+00 0.0000000E+00

2 2.6863783E-03 6.9596781E-03 0.0000000E+00 0.0000000E+00

3 1.3820748E-03 -5.0058910E-03 -0.0000000E+00 0.0000000E+00

4 1.6863216E-03 -5.9982189E-03 0.0000000E+00 0.0000000E+00

5 2.6852910E-03 6.9657355E-03 0.0000000E+00 0.0000000E+00

6 1.1049735E-03 -5.4761223E-03 -0.0000000E+00 0.0000000E+00
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